<!DOCTYPE html>
ST 558 Project 2
Yan Liu & Mandy Liesch
library(rmarkdown)
library(usethis)
use_git_config(user.name="Mandy Liesch", user.email="amliesch@ncsu.edu")
Introduction
Online News Popularity Data Set summarizes a heterogeneous set of features about articles published by Mashable in a period of two years. The goal is to predict the number of shares in social networks (popularity). Here we first showed some summary statistics and plots about the data grouped by weekdays. Then we create several models to predict the response, shares in different channels. The performance of these models will be evaluated by RMSE. The model having the lowest RMSE will be selected as a winner. The methods of modeling include:
- Regression Tree
- Log Transformed Full Linear Regression Model
- Linear Regression Model Without Day of the Week
- Subset Linear Regression Model #1
- Subset Linear Regression Model #2
- Backward Selection Linear Regression
- Bagged Regression Tree
- Random Forest Model
- Boosted Tree Model
Data preparation
Subset Data by Channel
library(tidyverse)
data_whole<-read_csv("OnlineNewsPopularity/OnlineNewsPopularity.csv")
#create a new variable, channel, to help with the subsetting.
data_whole$channel <- names(data_whole[14:19])[apply(data_whole[14:19],1, match, x = 1)]
data_whole$channel <-sub("data_channel_is_", "", data_whole$channel)
#Subset the data to work on the data channel of interest
#channel_interest = params[[1]]$team
#Get the important data
data_interest<-data_whole%>%
filter(channel==x[[2]]$team)%>%
select(-c(1,14:19,62))
Establish Training Data
Split the data into a training (70% of the data) and test set (30% of the data)
library(caret)
library(rsample)
set.seed(14)
index <- initial_split(data_interest,
prop = 0.7)
train <- training(index)
test <- testing(index)
Data Summaries
Correlation Plots
This graphical function looks at the correlation of all of the different variables against each other.
library(corrplot)
#drop values that are not important (the days of the week)
newTrain<-train[ -c(25:31) ]
lmNewTest<-test[ -c(25:31) ]
#drop the predictor variables
predictTrain<-newTrain[ -c(47) ]
#Calculate the correlation Matrix and round it
res <- cor(predictTrain)
#Plot the correlation matrix values by cluster
corrplot(res, type = "upper", order = "hclust",
tl.col = "black", tl.cex = 0.5)
From the results of this spot, it appears that we likely have some clusters of colinearity.
Table Summary
We summarize the train data of interest in tables grouped by weekdays, showing the pattern of shares in a week.
#create a new variable, weekday, to help with the creating plots.
train$weekday <- names(train[25:31])[apply(train[25:31],1, match, x = 1)]
train$weekday <-sub("weekday_is_", "", train$weekday)
#summarize the train data by weekday.knitr::kable(
summary<-train%>%group_by(weekday)%>%
summarise(Avg=round(mean(shares),0),Sd=round(sd(shares),0),Median=median(shares),IQR=round(IQR(shares),0))
knitr::kable(summary)
| weekday | Avg | Sd | Median | IQR |
|---|---|---|---|---|
| friday | 3896 | 5122 | 2200 | 2400 |
| monday | 4008 | 5391 | 2450 | 3025 |
| saturday | 3520 | 3784 | 2450 | 2275 |
| sunday | 4676 | 6409 | 2650 | 3175 |
| thursday | 2965 | 2793 | 2000 | 2150 |
| tuesday | 3369 | 4412 | 1900 | 2300 |
| wednesday | 3414 | 4062 | 2100 | 2500 |
We summarize the train data of interest in the plots below. The histogram of shares shows that it is not a normal distribution. After log transformation, the distribution of log(share) is more close to a normal distribution.
#histogram of shares and log(shares).
hist(train$shares)
hist(log(train$shares))
Data Plots
Box Plots
We use box plots to show the difference in shares and num_images between weekdays and weekends.If the boxes of weekends are higher than the ones of weekdays, then articles be shared more often during weekends.
g1<-ggplot(train, aes(x=factor(is_weekend,labels=c("No", "Yes")),y=shares))
g1+geom_boxplot(fill="white", width=0.5,lwd=1.5,color='black',outlier.shape = NA)+
scale_y_continuous(limits = quantile(train$shares, c(0.1, 0.9)))+
labs(subtitle = "Shares on weekend",x="On weekend or not")
g2<-ggplot(train, aes(x=factor(is_weekend,labels=c("No", "Yes")),y=num_imgs))
g2+geom_boxplot(fill="white", width=0.5,lwd=1.5,color='black',outlier.shape = NA)+
scale_y_continuous(limits = quantile(train$num_imgs, c(0, 0.95)))+
labs(subtitle = "number of images on weekend",x="On weekend or not")
Linear Model
We can inspect the trend of shares as a function of num_images. If the points show an upward trend, then articles with more images tend to be shared more often. If we see a negative trend then articles with more images tend to be shared less often. We can also observe the difference after the log transformation.
g3<-ggplot(train,aes(x=num_imgs,y=shares))
g3+geom_point()+
labs(subtitle = "num_imgs vs shares")+
scale_y_continuous(limits = quantile(train$shares, c(0, 0.9)))+
scale_x_continuous(limits = quantile(train$num_imgs, c(0, 0.9)))+
geom_smooth(method="lm")
g4<-ggplot(train,aes(x=num_imgs,y=log(shares)))
g4+geom_point()+
labs(subtitle = "num_imgs vs log(shares)")+
scale_y_continuous(limits = quantile(log(train$shares), c(0, 0.9)))+
scale_x_continuous(limits = quantile(train$num_imgs, c(0, 0.9)))+
geom_smooth(method="lm")
#remove weekday from data set
train<-train%>%select(-weekday)
Models
Regression Tree
Classification trees are machine learning algorithms that have several benefits, including the ease of operation, and less pre-processing. Data does not require normalization, scaling, and removal of missing values. The results are usually easy to explain, and stakeholders usually can understand them. A regression tree is a tree that uses numerical values to predict the nodes and tree branches. Despite all of the benefits, the Decision Tree algorithm can’t be used for regression and predicting continuous values, it also does not transfer well to other datasets.
library(tree)
tree.news<-tree(shares~., data=train)
summary(tree.news)
##
## Regression tree:
## tree(formula = shares ~ ., data = train)
## Variables actually used in tree construction:
## [1] "self_reference_avg_sharess"
## [2] "min_positive_polarity"
## [3] "abs_title_sentiment_polarity"
## [4] "kw_avg_max"
## [5] "LDA_00"
## [6] "n_non_stop_unique_tokens"
## [7] "global_sentiment_polarity"
## [8] "num_videos"
## [9] "kw_avg_min"
## [10] "kw_min_max"
## [11] "LDA_02"
## [12] "LDA_03"
## Number of terminal nodes: 13
## Residual mean deviance: 15310000 = 2.47e+10 / 1613
## Distribution of residuals:
## Min. 1st Qu. Median Mean 3rd Qu.
## -17000.0 -1733.0 -968.7 0.0 444.0
## Max.
## 37440.0
plot(tree.news)
text(tree.news, pretty=0)
yhat.regTree<- predict(tree.news, newdata = test)
yhat.test<-test["shares"]
yhat.regTree<-as.data.frame(yhat.regTree)
meanRegTree<-mean((yhat.regTree$yhat.regTree-yhat.test$shares)^2)
RMSE_regTree<-sqrt(meanRegTree)
These results can vary widely depending on the datasets.
Linear Models
Linear models are very valuable and powerful tools, and are very versatile, and can be applied to many situations. Multiple regression examines the relationship between several independent variables and one dependent variable (in this case, total Shares). Regression models give users the ability to determine the relative influence of one or more predictor variables to the predictor, and it also allows users to identify outliers, or anomalies. The main disadvantages have to do with the input quality of data. Input that is incomplete may lead to wrong conclusions. It also assumes that data is independent, which is not always the case.
There are several different types of linear models. In this project, we use multiple different multiple regression values that were log transformed, representing the full dataset, and several partial subsets with multiple variables removed at different points for multicolinearity reasons.
There are also several different types of variable selection, including forward, backward, and stepwise, which user predefined criteria set the entry and/or exit criteria of the models. Backwards selection starts with a full model, and then removes variables that are least significant one at a time, until the model criteria defined by the user are hit. Forward regression does the opposite, and is not represented here.
Linear Regression After Log Transformation
Transform the response with log, then fit a linear regression model with all the variables. Then calculate the RMSE of the model.
lm<- lm(log(shares)~.,train)
summary(lm)
##
## Call:
## lm(formula = log(shares) ~ ., data = train)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8031 -0.4854 -0.0801 0.3906 3.4079
##
## Coefficients: (3 not defined because of singularities)
## Estimate
## (Intercept) 6.545e+00
## timedelta 4.318e-04
## n_tokens_title -3.308e-03
## n_tokens_content 2.749e-06
## n_unique_tokens -6.531e-01
## n_non_stop_words 3.421e-01
## n_non_stop_unique_tokens -6.008e-01
## num_hrefs -5.360e-03
## num_self_hrefs -1.197e-03
## num_imgs -5.212e-03
## num_videos 1.058e-02
## average_token_length -2.886e-02
## num_keywords 4.856e-02
## kw_min_min 7.956e-04
## kw_max_min -1.829e-05
## kw_avg_min 7.622e-05
## kw_min_max -1.173e-06
## kw_max_max 7.596e-08
## kw_avg_max 5.840e-07
## kw_min_avg -1.363e-05
## kw_max_avg -3.077e-05
## kw_avg_avg 2.774e-04
## self_reference_min_shares -7.309e-08
## self_reference_max_shares -9.991e-07
## self_reference_avg_sharess 3.819e-06
## weekday_is_monday -1.085e-01
## weekday_is_tuesday -2.453e-01
## weekday_is_wednesday -2.309e-01
## weekday_is_thursday -2.957e-01
## weekday_is_friday -1.020e-01
## weekday_is_saturday -1.759e-01
## weekday_is_sunday NA
## is_weekend NA
## LDA_00 5.704e-01
## LDA_01 -5.812e-01
## LDA_02 4.556e-02
## LDA_03 -1.695e-01
## LDA_04 NA
## global_subjectivity -1.402e-01
## global_sentiment_polarity 2.535e-01
## global_rate_positive_words 5.764e-01
## global_rate_negative_words -6.943e+00
## rate_positive_words 6.558e-01
## rate_negative_words 1.248e+00
## avg_positive_polarity -5.645e-01
## min_positive_polarity -9.534e-01
## max_positive_polarity -1.564e-01
## avg_negative_polarity 8.285e-02
## min_negative_polarity -1.711e-01
## max_negative_polarity -1.671e-01
## title_subjectivity 3.270e-02
## title_sentiment_polarity -8.096e-02
## abs_title_subjectivity 2.817e-01
## abs_title_sentiment_polarity 3.364e-01
## Std. Error
## (Intercept) 3.623e-01
## timedelta 1.527e-04
## n_tokens_title 9.410e-03
## n_tokens_content 7.120e-05
## n_unique_tokens 6.221e-01
## n_non_stop_words 9.102e-01
## n_non_stop_unique_tokens 5.597e-01
## num_hrefs 2.045e-03
## num_self_hrefs 4.203e-03
## num_imgs 3.408e-03
## num_videos 5.159e-03
## average_token_length 8.535e-02
## num_keywords 1.145e-02
## kw_min_min 4.569e-04
## kw_max_min 2.356e-05
## kw_avg_min 8.261e-05
## kw_min_max 2.716e-07
## kw_max_max 1.677e-07
## kw_avg_max 3.096e-07
## kw_min_avg 2.541e-05
## kw_max_avg 8.900e-06
## kw_avg_avg 5.378e-05
## self_reference_min_shares 2.332e-06
## self_reference_max_shares 8.901e-07
## self_reference_avg_sharess 2.785e-06
## weekday_is_monday 9.654e-02
## weekday_is_tuesday 9.313e-02
## weekday_is_wednesday 9.394e-02
## weekday_is_thursday 9.314e-02
## weekday_is_friday 9.670e-02
## weekday_is_saturday 1.091e-01
## weekday_is_sunday NA
## is_weekend NA
## LDA_00 1.169e-01
## LDA_01 1.847e-01
## LDA_02 1.269e-01
## LDA_03 1.336e-01
## LDA_04 NA
## global_subjectivity 2.937e-01
## global_sentiment_polarity 5.284e-01
## global_rate_positive_words 2.276e+00
## global_rate_negative_words 5.208e+00
## rate_positive_words 7.906e-01
## rate_negative_words 8.367e-01
## avg_positive_polarity 4.631e-01
## min_positive_polarity 3.686e-01
## max_positive_polarity 1.421e-01
## avg_negative_polarity 4.271e-01
## min_negative_polarity 1.588e-01
## max_negative_polarity 3.437e-01
## title_subjectivity 9.924e-02
## title_sentiment_polarity 9.859e-02
## abs_title_subjectivity 1.253e-01
## abs_title_sentiment_polarity 1.463e-01
## t value Pr(>|t|)
## (Intercept) 18.066 < 2e-16
## timedelta 2.828 0.00475
## n_tokens_title -0.352 0.72524
## n_tokens_content 0.039 0.96921
## n_unique_tokens -1.050 0.29390
## n_non_stop_words 0.376 0.70705
## n_non_stop_unique_tokens -1.073 0.28324
## num_hrefs -2.621 0.00885
## num_self_hrefs -0.285 0.77574
## num_imgs -1.530 0.12633
## num_videos 2.050 0.04050
## average_token_length -0.338 0.73532
## num_keywords 4.241 2.36e-05
## kw_min_min 1.741 0.08183
## kw_max_min -0.777 0.43748
## kw_avg_min 0.923 0.35635
## kw_min_max -4.319 1.67e-05
## kw_max_max 0.453 0.65066
## kw_avg_max 1.886 0.05943
## kw_min_avg -0.536 0.59169
## kw_max_avg -3.457 0.00056
## kw_avg_avg 5.158 2.81e-07
## self_reference_min_shares -0.031 0.97500
## self_reference_max_shares -1.122 0.26183
## self_reference_avg_sharess 1.371 0.17049
## weekday_is_monday -1.124 0.26127
## weekday_is_tuesday -2.634 0.00852
## weekday_is_wednesday -2.458 0.01409
## weekday_is_thursday -3.175 0.00153
## weekday_is_friday -1.055 0.29172
## weekday_is_saturday -1.612 0.10710
## weekday_is_sunday NA NA
## is_weekend NA NA
## LDA_00 4.880 1.17e-06
## LDA_01 -3.146 0.00168
## LDA_02 0.359 0.71959
## LDA_03 -1.269 0.20467
## LDA_04 NA NA
## global_subjectivity -0.477 0.63319
## global_sentiment_polarity 0.480 0.63143
## global_rate_positive_words 0.253 0.80008
## global_rate_negative_words -1.333 0.18269
## rate_positive_words 0.830 0.40694
## rate_negative_words 1.492 0.13589
## avg_positive_polarity -1.219 0.22311
## min_positive_polarity -2.587 0.00978
## max_positive_polarity -1.100 0.27140
## avg_negative_polarity 0.194 0.84623
## min_negative_polarity -1.077 0.28144
## max_negative_polarity -0.486 0.62694
## title_subjectivity 0.330 0.74177
## title_sentiment_polarity -0.821 0.41168
## abs_title_subjectivity 2.248 0.02474
## abs_title_sentiment_polarity 2.299 0.02165
##
## (Intercept) ***
## timedelta **
## n_tokens_title
## n_tokens_content
## n_unique_tokens
## n_non_stop_words
## n_non_stop_unique_tokens
## num_hrefs **
## num_self_hrefs
## num_imgs
## num_videos *
## average_token_length
## num_keywords ***
## kw_min_min .
## kw_max_min
## kw_avg_min
## kw_min_max ***
## kw_max_max
## kw_avg_max .
## kw_min_avg
## kw_max_avg ***
## kw_avg_avg ***
## self_reference_min_shares
## self_reference_max_shares
## self_reference_avg_sharess
## weekday_is_monday
## weekday_is_tuesday **
## weekday_is_wednesday *
## weekday_is_thursday **
## weekday_is_friday
## weekday_is_saturday
## weekday_is_sunday
## is_weekend
## LDA_00 ***
## LDA_01 **
## LDA_02
## LDA_03
## LDA_04
## global_subjectivity
## global_sentiment_polarity
## global_rate_positive_words
## global_rate_negative_words
## rate_positive_words
## rate_negative_words
## avg_positive_polarity
## min_positive_polarity **
## max_positive_polarity
## avg_negative_polarity
## min_negative_polarity
## max_negative_polarity
## title_subjectivity
## title_sentiment_polarity
## abs_title_subjectivity *
## abs_title_sentiment_polarity *
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7616 on 1575 degrees of freedom
## Multiple R-squared: 0.2238, Adjusted R-squared: 0.1992
## F-statistic: 9.084 on 50 and 1575 DF, p-value: < 2.2e-16
yhat_lm<-predict(lm,test)
RMSE_lm<-sqrt(mean((test$shares - exp(yhat_lm))^2))
Plot the lm Residuals
par(mfrow=c(2,2))
plot(lm)
Looking at our residuals, there seems to be skewing in both direction, indicating that the data, even after transformation, has extreme outliers in both directions.
Model Removing the Day Variable
#look at the data for multicolinearity
lmNewTest<-test[ -c(25:31) ]
lm2<- lm(log(shares)~.,newTrain)
yhat_lm2<-predict(lm2,lmNewTest)
RMSE_lm2<-sqrt(mean((lmNewTest$shares - exp(yhat_lm2))^2))
library(mctest)
omcdiag(lm2)
##
## Call:
## omcdiag(mod = lm2)
##
##
## Overall Multicollinearity Diagnostics
##
## MC Results detection
## Determinant |X'X|: 0.000000e+00 1
## Farrar Chi-Square: 1.123337e+05 1
## Red Indicator: 1.699000e-01 0
## Sum of Lambda Inverse: -1.852839e+15 0
## Theil's Method: 2.401140e+01 1
## Condition Number: NaN NA
##
## 1 --> COLLINEARITY is detected by the test
## 0 --> COLLINEARITY is not detected by the test
imcdiag(lm2)
##
## Call:
## imcdiag(mod = lm2)
##
##
## All Individual Multicollinearity Diagnostics Result
##
## VIF TOL
## timedelta 2.6385 0.3790
## n_tokens_title 1.1231 0.8904
## n_tokens_content 4.3346 0.2307
## n_unique_tokens 15.8991 0.0629
## n_non_stop_words 14.1605 0.0706
## n_non_stop_unique_tokens 11.9212 0.0839
## num_hrefs 2.8901 0.3460
## num_self_hrefs 1.9459 0.5139
## num_imgs 1.9782 0.5055
## num_videos 1.2102 0.8263
## average_token_length 3.9457 0.2534
## num_keywords 1.7864 0.5598
## kw_min_min 3.8111 0.2624
## kw_max_min 10.6723 0.0937
## kw_avg_min 10.4727 0.0955
## kw_min_max 2.9877 0.3347
## kw_max_max 4.7543 0.2103
## kw_avg_max 5.6922 0.1757
## kw_min_avg 2.9120 0.3434
## kw_max_avg 9.4605 0.1057
## kw_avg_avg 11.7101 0.0854
## self_reference_min_shares 7.1598 0.1397
## self_reference_max_shares 4.2655 0.2344
## self_reference_avg_sharess 12.6587 0.0790
## is_weekend 1.1414 0.8761
## LDA_00 Inf 0.0000
## LDA_01 Inf 0.0000
## LDA_02 Inf 0.0000
## LDA_03 Inf 0.0000
## LDA_04 Inf 0.0000
## global_subjectivity 2.1811 0.4585
## global_sentiment_polarity 7.2628 0.1377
## global_rate_positive_words 3.9485 0.2533
## global_rate_negative_words 7.0883 0.1411
## rate_positive_words 36.4128 0.0275
## rate_negative_words 34.3847 0.0291
## avg_positive_polarity 5.6245 0.1778
## min_positive_polarity 2.0946 0.4774
## max_positive_polarity 2.7954 0.3577
## avg_negative_polarity 8.4530 0.1183
## min_negative_polarity 6.1390 0.1629
## max_negative_polarity 3.5893 0.2786
## title_subjectivity 2.6708 0.3744
## title_sentiment_polarity 1.8543 0.5393
## abs_title_subjectivity 1.4851 0.6734
## abs_title_sentiment_polarity 3.2414 0.3085
## Wi
## timedelta 57.5288
## n_tokens_title 4.3220
## n_tokens_content 117.0824
## n_unique_tokens 523.1255
## n_non_stop_words 462.0781
## n_non_stop_unique_tokens 383.4559
## num_hrefs 66.3638
## num_self_hrefs 33.2104
## num_imgs 34.3470
## num_videos 7.3799
## average_token_length 103.4258
## num_keywords 27.6118
## kw_min_min 98.6997
## kw_max_min 339.6063
## kw_avg_min 332.5959
## kw_min_max 69.7909
## kw_max_max 131.8162
## kw_avg_max 164.7500
## kw_min_avg 67.1318
## kw_max_avg 297.0575
## kw_avg_avg 376.0431
## self_reference_min_shares 216.2791
## self_reference_max_shares 114.6551
## self_reference_avg_sharess 409.3507
## is_weekend 4.9652
## LDA_00 Inf
## LDA_01 Inf
## LDA_02 Inf
## LDA_03 Inf
## LDA_04 Inf
## global_subjectivity 41.4698
## global_sentiment_polarity 219.8945
## global_rate_positive_words 103.5268
## global_rate_negative_words 213.7678
## rate_positive_words 1243.3815
## rate_negative_words 1172.1731
## avg_positive_polarity 162.3726
## min_positive_polarity 38.4311
## max_positive_polarity 63.0377
## avg_negative_polarity 261.6822
## min_negative_polarity 180.4358
## max_negative_polarity 90.9136
## title_subjectivity 58.6631
## title_sentiment_polarity 29.9966
## abs_title_subjectivity 17.0309
## abs_title_sentiment_polarity 78.6987
## Fi Leamer
## timedelta 58.8735 0.6156
## n_tokens_title 4.4230 0.9436
## n_tokens_content 119.8192 0.4803
## n_unique_tokens 535.3533 0.2508
## n_non_stop_words 472.8790 0.2657
## n_non_stop_unique_tokens 392.4190 0.2896
## num_hrefs 67.9151 0.5882
## num_self_hrefs 33.9867 0.7169
## num_imgs 35.1499 0.7110
## num_videos 7.5524 0.9090
## average_token_length 105.8434 0.5034
## num_keywords 28.2572 0.7482
## kw_min_min 101.0068 0.5122
## kw_max_min 347.5445 0.3061
## kw_avg_min 340.3701 0.3090
## kw_min_max 71.4222 0.5785
## kw_max_max 134.8973 0.4586
## kw_avg_max 168.6010 0.4191
## kw_min_avg 68.7009 0.5860
## kw_max_avg 304.0011 0.3251
## kw_avg_avg 384.8329 0.2922
## self_reference_min_shares 221.3346 0.3737
## self_reference_max_shares 117.3351 0.4842
## self_reference_avg_sharess 418.9190 0.2811
## is_weekend 5.0813 0.9360
## LDA_00 Inf 0.0000
## LDA_01 Inf 0.0000
## LDA_02 Inf 0.0000
## LDA_03 Inf 0.0000
## LDA_04 Inf 0.0000
## global_subjectivity 42.4391 0.6771
## global_sentiment_polarity 225.0344 0.3711
## global_rate_positive_words 105.9467 0.5032
## global_rate_negative_words 218.7645 0.3756
## rate_positive_words 1272.4450 0.1657
## rate_negative_words 1199.5722 0.1705
## avg_positive_polarity 166.1679 0.4217
## min_positive_polarity 39.3294 0.6910
## max_positive_polarity 64.5111 0.5981
## avg_negative_polarity 267.7989 0.3439
## min_negative_polarity 184.6534 0.4036
## max_negative_polarity 93.0387 0.5278
## title_subjectivity 60.0343 0.6119
## title_sentiment_polarity 30.6977 0.7344
## abs_title_subjectivity 17.4290 0.8206
## abs_title_sentiment_polarity 80.5383 0.5554
## CVIF Klein
## timedelta 3.3363 1
## n_tokens_title 1.4201 0
## n_tokens_content 5.4811 1
## n_unique_tokens 20.1042 1
## n_non_stop_words 17.9057 1
## n_non_stop_unique_tokens 15.0742 1
## num_hrefs 3.6545 1
## num_self_hrefs 2.4605 1
## num_imgs 2.5015 1
## num_videos 1.5303 0
## average_token_length 4.9892 1
## num_keywords 2.2589 1
## kw_min_min 4.8190 1
## kw_max_min 13.4950 1
## kw_avg_min 13.2425 1
## kw_min_max 3.7779 1
## kw_max_max 6.0117 1
## kw_avg_max 7.1978 1
## kw_min_avg 3.6822 1
## kw_max_avg 11.9627 1
## kw_avg_avg 14.8072 1
## self_reference_min_shares 9.0535 1
## self_reference_max_shares 5.3937 1
## self_reference_avg_sharess 16.0068 1
## is_weekend 1.4433 0
## LDA_00 Inf 1
## LDA_01 Inf 1
## LDA_02 Inf 1
## LDA_03 Inf 1
## LDA_04 Inf 1
## global_subjectivity 2.7580 1
## global_sentiment_polarity 9.1837 1
## global_rate_positive_words 4.9929 1
## global_rate_negative_words 8.9631 1
## rate_positive_words 46.0434 1
## rate_negative_words 43.4789 1
## avg_positive_polarity 7.1121 1
## min_positive_polarity 2.6485 1
## max_positive_polarity 3.5347 1
## avg_negative_polarity 10.6887 1
## min_negative_polarity 7.7627 1
## max_negative_polarity 4.5386 1
## title_subjectivity 3.3772 1
## title_sentiment_polarity 2.3448 1
## abs_title_subjectivity 1.8778 1
## abs_title_sentiment_polarity 4.0987 1
## IND1 IND2
## timedelta 0.0105 0.8470
## n_tokens_title 0.0248 0.1495
## n_tokens_content 0.0064 1.0493
## n_unique_tokens 0.0018 1.2781
## n_non_stop_words 0.0020 1.2676
## n_non_stop_unique_tokens 0.0023 1.2495
## num_hrefs 0.0096 0.8920
## num_self_hrefs 0.0143 0.6630
## num_imgs 0.0141 0.6745
## num_videos 0.0230 0.2369
## average_token_length 0.0071 1.0183
## num_keywords 0.0156 0.6004
## kw_min_min 0.0073 1.0060
## kw_max_min 0.0026 1.2361
## kw_avg_min 0.0027 1.2337
## kw_min_max 0.0093 0.9074
## kw_max_max 0.0059 1.0770
## kw_avg_max 0.0049 1.1243
## kw_min_avg 0.0096 0.8955
## kw_max_avg 0.0029 1.2198
## kw_avg_avg 0.0024 1.2475
## self_reference_min_shares 0.0039 1.1734
## self_reference_max_shares 0.0065 1.0442
## self_reference_avg_sharess 0.0022 1.2562
## is_weekend 0.0244 0.1690
## LDA_00 0.0000 1.3639
## LDA_01 0.0000 1.3639
## LDA_02 0.0000 1.3639
## LDA_03 0.0000 1.3639
## LDA_04 0.0000 1.3639
## global_subjectivity 0.0128 0.7386
## global_sentiment_polarity 0.0038 1.1761
## global_rate_positive_words 0.0070 1.0185
## global_rate_negative_words 0.0039 1.1715
## rate_positive_words 0.0008 1.3265
## rate_negative_words 0.0008 1.3243
## avg_positive_polarity 0.0049 1.1214
## min_positive_polarity 0.0133 0.7128
## max_positive_polarity 0.0100 0.8760
## avg_negative_polarity 0.0033 1.2026
## min_negative_polarity 0.0045 1.1418
## max_negative_polarity 0.0078 0.9839
## title_subjectivity 0.0104 0.8532
## title_sentiment_polarity 0.0150 0.6284
## abs_title_subjectivity 0.0187 0.4455
## abs_title_sentiment_polarity 0.0086 0.9431
##
## 1 --> COLLINEARITY is detected by the test
## 0 --> COLLINEARITY is not detected by the test
##
## n_tokens_title , n_tokens_content , n_unique_tokens , n_non_stop_words , n_non_stop_unique_tokens , num_self_hrefs , num_imgs , average_token_length , kw_min_min , kw_max_min , kw_avg_min , kw_max_max , kw_avg_max , kw_min_avg , self_reference_min_shares , self_reference_max_shares , self_reference_avg_sharess , is_weekend , LDA_02 , LDA_03 , LDA_04 , global_subjectivity , global_sentiment_polarity , global_rate_positive_words , global_rate_negative_words , rate_positive_words , rate_negative_words , min_positive_polarity , max_positive_polarity , avg_negative_polarity , min_negative_polarity , max_negative_polarity , title_subjectivity , coefficient(s) are non-significant may be due to multicollinearity
##
## R-square of y on all x: 0.2159
##
## * use method argument to check which regressors may be the reason of collinearity
## ===================================
Looking at all of the VIF values, we are going to start by removing all of the LDA Values, and the positive word rate to remove all “infinite” VIF values.
First Multicolinearity Trim
The mctest package was used to calculate the VIF values of multicolinearity.
toRemove<-c( "LDA_01", "LDA_02", "LDA_03", "LDA_04", "rate_positive_words")
trimTrain1 <- newTrain[, ! names(newTrain) %in% toRemove, drop = F]
lmNewTest3<-lmNewTest[, ! names(newTrain) %in% toRemove, drop = F]
#Repeat linear Model process
lm3<- lm(log(shares)~., trimTrain1)
yhat_lm3<-predict(lm3,lmNewTest3)
RMSE_lm3<-sqrt(mean((lmNewTest3$shares - exp(yhat_lm3))^2))
imcdiag(lm3)
##
## Call:
## imcdiag(mod = lm3)
##
##
## All Individual Multicollinearity Diagnostics Result
##
## VIF TOL
## timedelta 2.6264 0.3807
## n_tokens_title 1.1158 0.8962
## n_tokens_content 4.3256 0.2312
## n_unique_tokens 15.4512 0.0647
## n_non_stop_words 4.8511 0.2061
## n_non_stop_unique_tokens 11.7375 0.0852
## num_hrefs 2.7925 0.3581
## num_self_hrefs 1.9153 0.5221
## num_imgs 1.9562 0.5112
## num_videos 1.2023 0.8318
## average_token_length 3.8729 0.2582
## num_keywords 1.7220 0.5807
## kw_min_min 3.7473 0.2669
## kw_max_min 10.6639 0.0938
## kw_avg_min 10.4650 0.0956
## kw_min_max 2.9635 0.3374
## kw_max_max 4.5710 0.2188
## kw_avg_max 5.6033 0.1785
## kw_min_avg 2.7818 0.3595
## kw_max_avg 8.9034 0.1123
## kw_avg_avg 10.5816 0.0945
## self_reference_min_shares 7.1123 0.1406
## self_reference_max_shares 4.2611 0.2347
## self_reference_avg_sharess 12.6238 0.0792
## is_weekend 1.1383 0.8785
## LDA_00 1.1841 0.8445
## global_subjectivity 2.1502 0.4651
## global_sentiment_polarity 7.2308 0.1383
## global_rate_positive_words 3.8535 0.2595
## global_rate_negative_words 6.9925 0.1430
## rate_negative_words 8.0273 0.1246
## avg_positive_polarity 5.6172 0.1780
## min_positive_polarity 2.0855 0.4795
## max_positive_polarity 2.7770 0.3601
## avg_negative_polarity 8.4364 0.1185
## min_negative_polarity 6.1223 0.1633
## max_negative_polarity 3.5673 0.2803
## title_subjectivity 2.6609 0.3758
## title_sentiment_polarity 1.8521 0.5399
## abs_title_subjectivity 1.4725 0.6791
## abs_title_sentiment_polarity 3.2370 0.3089
## Wi Fi
## timedelta 64.4466 66.1408
## n_tokens_title 4.5874 4.7080
## n_tokens_content 131.7788 135.2430
## n_unique_tokens 572.6308 587.6842
## n_non_stop_words 152.6009 156.6125
## n_non_stop_unique_tokens 425.4743 436.6592
## num_hrefs 71.0283 72.8955
## num_self_hrefs 36.2698 37.2233
## num_imgs 37.8897 38.8857
## num_videos 8.0143 8.2249
## average_token_length 113.8403 116.8329
## num_keywords 28.6101 29.3622
## kw_min_min 108.8620 111.7238
## kw_max_min 382.9332 392.9998
## kw_avg_min 375.0503 384.9097
## kw_min_max 77.8026 79.8479
## kw_max_max 141.5008 145.2206
## kw_avg_max 182.4062 187.2013
## kw_min_avg 70.6054 72.4615
## kw_max_avg 313.1730 321.4057
## kw_avg_avg 379.6695 389.6503
## self_reference_min_shares 242.1989 248.5658
## self_reference_max_shares 129.2224 132.6195
## self_reference_avg_sharess 460.5949 472.7030
## is_weekend 5.4784 5.6224
## LDA_00 7.2952 7.4870
## global_subjectivity 45.5768 46.7749
## global_sentiment_polarity 246.8963 253.3867
## global_rate_positive_words 113.0694 116.0418
## global_rate_negative_words 237.4533 243.6955
## rate_negative_words 278.4569 285.7770
## avg_positive_polarity 182.9554 187.7650
## min_positive_polarity 43.0124 44.1432
## max_positive_polarity 70.4131 72.2641
## avg_negative_polarity 294.6687 302.4150
## min_negative_polarity 202.9725 208.3082
## max_negative_polarity 101.7302 104.4045
## title_subjectivity 65.8119 67.5419
## title_sentiment_polarity 33.7641 34.6517
## abs_title_subjectivity 18.7233 19.2155
## abs_title_sentiment_polarity 88.6404 90.9706
## Leamer CVIF
## timedelta 0.6170 3.1221
## n_tokens_title 0.9467 1.3263
## n_tokens_content 0.4808 5.1420
## n_unique_tokens 0.2544 18.3673
## n_non_stop_words 0.4540 5.7667
## n_non_stop_unique_tokens 0.2919 13.9527
## num_hrefs 0.5984 3.3195
## num_self_hrefs 0.7226 2.2768
## num_imgs 0.7150 2.3254
## num_videos 0.9120 1.4291
## average_token_length 0.5081 4.6039
## num_keywords 0.7620 2.0470
## kw_min_min 0.5166 4.4545
## kw_max_min 0.3062 12.6765
## kw_avg_min 0.3091 12.4400
## kw_min_max 0.5809 3.5228
## kw_max_max 0.4677 5.4337
## kw_avg_max 0.4225 6.6608
## kw_min_avg 0.5996 3.3068
## kw_max_avg 0.3351 10.5837
## kw_avg_avg 0.3074 12.5786
## self_reference_min_shares 0.3750 8.4545
## self_reference_max_shares 0.4844 5.0653
## self_reference_avg_sharess 0.2815 15.0063
## is_weekend 0.9373 1.3531
## LDA_00 0.9190 1.4076
## global_subjectivity 0.6820 2.5560
## global_sentiment_polarity 0.3719 8.5955
## global_rate_positive_words 0.5094 4.5807
## global_rate_negative_words 0.3782 8.3122
## rate_negative_words 0.3530 9.5423
## avg_positive_polarity 0.4219 6.6773
## min_positive_polarity 0.6925 2.4791
## max_positive_polarity 0.6001 3.3011
## avg_negative_polarity 0.3443 10.0286
## min_negative_polarity 0.4041 7.2778
## max_negative_polarity 0.5295 4.2406
## title_subjectivity 0.6130 3.1630
## title_sentiment_polarity 0.7348 2.2016
## abs_title_subjectivity 0.8241 1.7504
## abs_title_sentiment_polarity 0.5558 3.8479
## Klein IND1
## timedelta 1 0.0096
## n_tokens_title 0 0.0226
## n_tokens_content 1 0.0058
## n_unique_tokens 1 0.0016
## n_non_stop_words 1 0.0052
## n_non_stop_unique_tokens 1 0.0022
## num_hrefs 1 0.0090
## num_self_hrefs 1 0.0132
## num_imgs 1 0.0129
## num_videos 0 0.0210
## average_token_length 1 0.0065
## num_keywords 1 0.0147
## kw_min_min 1 0.0067
## kw_max_min 1 0.0024
## kw_avg_min 1 0.0024
## kw_min_max 1 0.0085
## kw_max_max 1 0.0055
## kw_avg_max 1 0.0045
## kw_min_avg 1 0.0091
## kw_max_avg 1 0.0028
## kw_avg_avg 1 0.0024
## self_reference_min_shares 1 0.0035
## self_reference_max_shares 1 0.0059
## self_reference_avg_sharess 1 0.0020
## is_weekend 0 0.0222
## LDA_00 0 0.0213
## global_subjectivity 1 0.0117
## global_sentiment_polarity 1 0.0035
## global_rate_positive_words 1 0.0065
## global_rate_negative_words 1 0.0036
## rate_negative_words 1 0.0031
## avg_positive_polarity 1 0.0045
## min_positive_polarity 1 0.0121
## max_positive_polarity 1 0.0091
## avg_negative_polarity 1 0.0030
## min_negative_polarity 1 0.0041
## max_negative_polarity 1 0.0071
## title_subjectivity 1 0.0095
## title_sentiment_polarity 1 0.0136
## abs_title_subjectivity 1 0.0171
## abs_title_sentiment_polarity 1 0.0078
## IND2
## timedelta 0.9224
## n_tokens_title 0.1546
## n_tokens_content 1.1452
## n_unique_tokens 1.3932
## n_non_stop_words 1.1825
## n_non_stop_unique_tokens 1.3627
## num_hrefs 0.9561
## num_self_hrefs 0.7119
## num_imgs 0.7281
## num_videos 0.2506
## average_token_length 1.1050
## num_keywords 0.6246
## kw_min_min 1.0921
## kw_max_min 1.3499
## kw_avg_min 1.3472
## kw_min_max 0.9869
## kw_max_max 1.1637
## kw_avg_max 1.2237
## kw_min_avg 0.9541
## kw_max_avg 1.3223
## kw_avg_avg 1.3488
## self_reference_min_shares 1.2801
## self_reference_max_shares 1.1400
## self_reference_avg_sharess 1.3716
## is_weekend 0.1809
## LDA_00 0.2316
## global_subjectivity 0.7968
## global_sentiment_polarity 1.2836
## global_rate_positive_words 1.1030
## global_rate_negative_words 1.2765
## rate_negative_words 1.3040
## avg_positive_polarity 1.2244
## min_positive_polarity 0.7753
## max_positive_polarity 0.9532
## avg_negative_polarity 1.3130
## min_negative_polarity 1.2463
## max_negative_polarity 1.0720
## title_subjectivity 0.9298
## title_sentiment_polarity 0.6853
## abs_title_subjectivity 0.4780
## abs_title_sentiment_polarity 1.0294
##
## 1 --> COLLINEARITY is detected by the test
## 0 --> COLLINEARITY is not detected by the test
##
## n_tokens_title , n_tokens_content , n_unique_tokens , n_non_stop_words , n_non_stop_unique_tokens , num_self_hrefs , num_imgs , average_token_length , kw_min_min , kw_max_min , kw_avg_min , kw_max_max , kw_avg_max , kw_min_avg , self_reference_min_shares , self_reference_max_shares , self_reference_avg_sharess , is_weekend , global_subjectivity , global_sentiment_polarity , global_rate_positive_words , global_rate_negative_words , rate_negative_words , avg_positive_polarity , max_positive_polarity , avg_negative_polarity , min_negative_polarity , max_negative_polarity , title_subjectivity , title_sentiment_polarity , coefficient(s) are non-significant may be due to multicollinearity
##
## R-square of y on all x: 0.2087
##
## * use method argument to check which regressors may be the reason of collinearity
## ===================================
This improves the model multicolinearity, but we are still left with some. We then pare down and select those models with the next highest VIF removed one at a time, until all values are below 5.
Second Mulitcolinearity Trim
toRemove<-c("self_reference_avg_sharess", "kw_avg_min", "n_unique_tokens", "rate_negative_words", "kw_avg_avg", "n_non_stop_words", "global_sentiment_polarity", "avg_negative_polarity", "kw_max_max")
trimTrain2 <- trimTrain1[, ! names(trimTrain1) %in% toRemove, drop = F]
#Repeat linear Model process
lm4<- lm(log(shares)~., trimTrain2)
imcdiag(lm4)
##
## Call:
## imcdiag(mod = lm4)
##
##
## All Individual Multicollinearity Diagnostics Result
##
## VIF TOL
## timedelta 2.4987 0.4002
## n_tokens_title 1.1018 0.9076
## n_tokens_content 3.1074 0.3218
## n_non_stop_unique_tokens 2.3360 0.4281
## num_hrefs 2.5410 0.3935
## num_self_hrefs 1.8691 0.5350
## num_imgs 1.8628 0.5368
## num_videos 1.1666 0.8572
## average_token_length 1.4686 0.6809
## num_keywords 1.5997 0.6251
## kw_min_min 1.8372 0.5443
## kw_max_min 1.2628 0.7919
## kw_min_max 2.6483 0.3776
## kw_avg_max 4.5831 0.2182
## kw_min_avg 1.4173 0.7056
## kw_max_avg 1.4686 0.6809
## self_reference_min_shares 1.4277 0.7004
## self_reference_max_shares 1.7479 0.5721
## is_weekend 1.1259 0.8882
## LDA_00 1.1786 0.8485
## global_subjectivity 1.9334 0.5172
## global_rate_positive_words 1.3992 0.7147
## global_rate_negative_words 1.4836 0.6740
## avg_positive_polarity 3.3090 0.3022
## min_positive_polarity 1.9154 0.5221
## max_positive_polarity 2.6551 0.3766
## min_negative_polarity 2.0094 0.4977
## max_negative_polarity 1.2212 0.8188
## title_subjectivity 2.6509 0.3772
## title_sentiment_polarity 1.7995 0.5557
## abs_title_subjectivity 1.4675 0.6815
## abs_title_sentiment_polarity 3.1556 0.3169
## Wi Fi
## timedelta 77.0635 79.6823
## n_tokens_title 5.2366 5.4146
## n_tokens_content 108.3587 112.0409
## n_non_stop_unique_tokens 68.6988 71.0332
## num_hrefs 79.2386 81.9312
## num_self_hrefs 44.6909 46.2096
## num_imgs 44.3659 45.8735
## num_videos 8.5686 8.8598
## average_token_length 24.0971 24.9159
## num_keywords 30.8363 31.8841
## kw_min_min 43.0505 44.5134
## kw_max_min 13.5150 13.9743
## kw_min_max 84.7539 87.6340
## kw_avg_max 184.2405 190.5013
## kw_min_avg 21.4584 22.1876
## kw_max_avg 24.0957 24.9145
## self_reference_min_shares 21.9925 22.7399
## self_reference_max_shares 38.4578 39.7646
## is_weekend 6.4725 6.6925
## LDA_00 9.1844 9.4965
## global_subjectivity 47.9963 49.6273
## global_rate_positive_words 20.5278 21.2254
## global_rate_negative_words 24.8679 25.7130
## avg_positive_polarity 118.7255 122.7600
## min_positive_polarity 47.0678 48.6672
## max_positive_polarity 85.1031 87.9951
## min_negative_polarity 51.9030 53.6667
## max_negative_polarity 11.3763 11.7629
## title_subjectivity 84.8856 87.7702
## title_sentiment_polarity 41.1099 42.5069
## abs_title_subjectivity 24.0363 24.8531
## abs_title_sentiment_polarity 110.8374 114.6038
## Leamer CVIF
## timedelta 0.6326 2.7710
## n_tokens_title 0.9527 1.2219
## n_tokens_content 0.5673 3.4460
## n_non_stop_unique_tokens 0.6543 2.5906
## num_hrefs 0.6273 2.8179
## num_self_hrefs 0.7314 2.0728
## num_imgs 0.7327 2.0658
## num_videos 0.9258 1.2938
## average_token_length 0.8252 1.6287
## num_keywords 0.7906 1.7740
## kw_min_min 0.7378 2.0375
## kw_max_min 0.8899 1.4005
## kw_min_max 0.6145 2.9369
## kw_avg_max 0.4671 5.0826
## kw_min_avg 0.8400 1.5718
## kw_max_avg 0.8252 1.6287
## self_reference_min_shares 0.8369 1.5833
## self_reference_max_shares 0.7564 1.9384
## is_weekend 0.9424 1.2486
## LDA_00 0.9211 1.3071
## global_subjectivity 0.7192 2.1441
## global_rate_positive_words 0.8454 1.5517
## global_rate_negative_words 0.8210 1.6453
## avg_positive_polarity 0.5497 3.6696
## min_positive_polarity 0.7226 2.1241
## max_positive_polarity 0.6137 2.9444
## min_negative_polarity 0.7054 2.2284
## max_negative_polarity 0.9049 1.3543
## title_subjectivity 0.6142 2.9397
## title_sentiment_polarity 0.7455 1.9956
## abs_title_subjectivity 0.8255 1.6274
## abs_title_sentiment_polarity 0.5629 3.4994
## Klein IND1
## timedelta 1 0.0078
## n_tokens_title 0 0.0177
## n_tokens_content 1 0.0063
## n_non_stop_unique_tokens 1 0.0083
## num_hrefs 1 0.0077
## num_self_hrefs 1 0.0104
## num_imgs 1 0.0104
## num_videos 0 0.0167
## average_token_length 1 0.0132
## num_keywords 1 0.0122
## kw_min_min 1 0.0106
## kw_max_min 1 0.0154
## kw_min_max 1 0.0073
## kw_avg_max 1 0.0042
## kw_min_avg 1 0.0137
## kw_max_avg 1 0.0132
## self_reference_min_shares 1 0.0136
## self_reference_max_shares 1 0.0111
## is_weekend 0 0.0173
## LDA_00 0 0.0165
## global_subjectivity 1 0.0101
## global_rate_positive_words 1 0.0139
## global_rate_negative_words 1 0.0131
## avg_positive_polarity 1 0.0059
## min_positive_polarity 1 0.0102
## max_positive_polarity 1 0.0073
## min_negative_polarity 1 0.0097
## max_negative_polarity 0 0.0159
## title_subjectivity 1 0.0073
## title_sentiment_polarity 1 0.0108
## abs_title_subjectivity 1 0.0133
## abs_title_sentiment_polarity 1 0.0062
## IND2
## timedelta 1.4080
## n_tokens_title 0.2170
## n_tokens_content 1.5920
## n_non_stop_unique_tokens 1.3426
## num_hrefs 1.4237
## num_self_hrefs 1.0916
## num_imgs 1.0873
## num_videos 0.3353
## average_token_length 0.7491
## num_keywords 0.8800
## kw_min_min 1.0698
## kw_max_min 0.4886
## kw_min_max 1.4611
## kw_avg_max 1.8353
## kw_min_avg 0.6912
## kw_max_avg 0.7491
## self_reference_min_shares 0.7033
## self_reference_max_shares 1.0045
## is_weekend 0.2625
## LDA_00 0.3558
## global_subjectivity 1.1333
## global_rate_positive_words 0.6698
## global_rate_negative_words 0.7652
## avg_positive_polarity 1.6381
## min_positive_polarity 1.1219
## max_positive_polarity 1.4633
## min_negative_polarity 1.1792
## max_negative_polarity 0.4253
## title_subjectivity 1.4619
## title_sentiment_polarity 1.0430
## abs_title_subjectivity 0.7478
## abs_title_sentiment_polarity 1.6036
##
## 1 --> COLLINEARITY is detected by the test
## 0 --> COLLINEARITY is not detected by the test
##
## n_tokens_title , n_tokens_content , num_self_hrefs , num_imgs , num_videos , average_token_length , kw_min_min , kw_max_min , self_reference_max_shares , is_weekend , global_subjectivity , global_rate_positive_words , global_rate_negative_words , avg_positive_polarity , max_positive_polarity , min_negative_polarity , max_negative_polarity , title_subjectivity , title_sentiment_polarity , coefficient(s) are non-significant may be due to multicollinearity
##
## R-square of y on all x: 0.1875
##
## * use method argument to check which regressors may be the reason of collinearity
## ===================================
After removing 15 more variables for obvious multicolinearity via VIF (>5), we need to replot the correlation matrix, which shows a much lower clustering rate of high correlations.
Replot Correlation
#Remove the predictor
train_cor<-trimTrain2[1:31]
res <- cor(train_cor)
palette = colorRampPalette(c("green", "white", "red")) (20)
heatmap(x = res, col = palette, symm = TRUE, cexRow=0.5, cexCol = 0.5)
The new heatmap appears to have less prominent clustering values.
Final Model Fit Prediction
#trim the testing data
newTest1<-test[ -c(25:31) ]
toRemove<-c( "LDA_01", "LDA_02", "LDA_03", "LDA_04", "rate_positive_words", "self_reference_avg_sharess", "kw_avg_min", "n_unique_tokens", "rate_negative_words", "kw_avg_avg", "n_non_stop_words", "global_sentiment_polarity", "avg_negative_polarity", "kw_max_max")
trimTest4 <- newTest1[, ! names(newTest1) %in% toRemove, drop = F]
yhat_lm4<-predict(lm4,trimTest4)
RMSE_lm4<-sqrt(mean((trimTest4$shares - exp(yhat_lm4))^2))
Backward Regression Selection
Transform the response with log, then fit a linear regression model with the variables after backward selection.
#backward selection after log transformation
library(leaps)
backward<- regsubsets(log(shares)~., trimTrain1, nvmax = 31, method = "backward")
backward_summary<-summary(backward)
#backward_summary[["which"]][size, ]
par(mfrow=c(1,3))
plot(backward_summary$cp, xlab = "Size", ylab = "backward Cp", type = "l")
plot(backward_summary$bic, xlab = "Size", ylab = "backward bic", type = "l")
plot(backward_summary$adjr2, xlab = "Size", ylab = "backward adjR2", type = "l")
coef(backward, which.min(backward_summary$cp))
## (Intercept)
## 6.331146e+00
## timedelta
## 4.278536e-04
## n_unique_tokens
## -1.264842e+00
## n_non_stop_words
## 8.155583e-01
## num_hrefs
## -5.579965e-03
## num_imgs
## -4.733042e-03
## num_videos
## 1.039906e-02
## num_keywords
## 5.086320e-02
## kw_min_min
## 5.370027e-04
## kw_min_max
## -1.277926e-06
## kw_avg_max
## 5.885611e-07
## kw_max_avg
## -2.782200e-05
## kw_avg_avg
## 2.447049e-04
## self_reference_avg_sharess
## 2.556476e-06
## is_weekend
## 9.672698e-02
## LDA_00
## 6.579277e-01
## global_rate_negative_words
## -6.486962e+00
## rate_negative_words
## 5.708355e-01
## avg_positive_polarity
## -7.618779e-01
## min_positive_polarity
## -8.260824e-01
## abs_title_subjectivity
## 2.558424e-01
## abs_title_sentiment_polarity
## 3.114417e-01
coef(backward, which.max(backward_summary$adjr2))
## (Intercept)
## 6.352630e+00
## timedelta
## 4.255111e-04
## n_unique_tokens
## -7.571428e-01
## n_non_stop_words
## 9.800345e-01
## n_non_stop_unique_tokens
## -6.207916e-01
## num_hrefs
## -5.375455e-03
## num_imgs
## -5.446052e-03
## num_videos
## 1.093032e-02
## num_keywords
## 4.876860e-02
## kw_min_min
## 5.018445e-04
## kw_min_max
## -1.259228e-06
## kw_avg_max
## 5.458451e-07
## kw_max_avg
## -2.599411e-05
## kw_avg_avg
## 2.436406e-04
## self_reference_max_shares
## -1.013196e-06
## self_reference_avg_sharess
## 3.787873e-06
## is_weekend
## 9.944649e-02
## LDA_00
## 6.548547e-01
## global_rate_negative_words
## -6.386244e+00
## rate_negative_words
## 4.691810e-01
## avg_positive_polarity
## -4.950408e-01
## min_positive_polarity
## -9.788910e-01
## max_positive_polarity
## -1.512775e-01
## min_negative_polarity
## -9.984699e-02
## abs_title_subjectivity
## 2.544754e-01
## abs_title_sentiment_polarity
## 2.959709e-01
#get best subset of the specified size with min cp.
sub <- backward_summary$which[which.min(backward_summary$cp), ]
# Create test model matrix, predcition, test error
test_model <- model.matrix(log(shares)~ ., data = lmNewTest3)
model <- test_model[, sub]
yhat_back<-model %*% coef(backward, which.min(backward_summary$cp))
RMSE_back<-sqrt(mean((test$shares - exp(yhat_back))^2))
Random Forests
As previously mentioned in the regression trees section, the random forest builds an entire forest of these trees, and merges them together to get a more accurate and stable predictions than one off trees. It is usually trained using the bagging method. Unlike regression trees, which are prone to overfitting, only a random subset of the features is taken into consideration by the algorithm for splitting a node (used CV to find the perfect amount of variables to use). This builds in additional error and makes a more robust prediction.
The manual dimensional reduction was necessary to have the processing speeds to handle the random forests model.
library(randomForest)
#single bagged model
tree.train<-randomForest(shares~., data=trimTrain1, mtry=32, importance=TRUE)
tree.train
##
## Call:
## randomForest(formula = shares ~ ., data = trimTrain1, mtry = 32, importance = TRUE)
## Type of random forest: regression
## Number of trees: 500
## No. of variables tried at each split: 32
##
## Mean of squared residuals: 18761497
## % Var explained: 5.65
#single bagged regression tree error prediction
tree.test<-lmNewTest3["shares"]
yhat.bag<-predict(tree.train, newdata=lmNewTest3)
yhat.bag<-as.data.frame(yhat.bag)
yhat_bag<-mean((yhat.bag$yhat.bag-tree.test$shares)^2)
RMSE_bag<-sqrt(yhat_bag)
#random forests model
tree.trainRF<-randomForest(shares~., data=trimTrain1, mtry=12, importance=TRUE)
tree.trainRF
##
## Call:
## randomForest(formula = shares ~ ., data = trimTrain1, mtry = 12, importance = TRUE)
## Type of random forest: regression
## Number of trees: 500
## No. of variables tried at each split: 12
##
## Mean of squared residuals: 18168449
## % Var explained: 8.63
#random forest error prediction
yhat.rf<-predict(tree.trainRF, newdata = lmNewTest3)
yhat.rf<-as.data.frame(yhat.rf)
yhat_rf<-mean((yhat.rf$yhat.rf-tree.test$shares)^2)
RMSE_rfTrimmed<-sqrt(yhat_rf)
varImpPlot(tree.trainRF)
Boosted Tree
Boosting is a general approach that can be applied to many statistical learning methods for regression or classification. The trees in boosting are grown sequentially : each tree is grown using information from previously grown trees. Boosting does not involve bootstrap sampling; instead each tree is fit on a modified version of the original data set.
Procedure (for regression trees):
1.Initialize predictions as 0,
2.Find the residuals (observed-predicted), call the set of them
3.Fit a tree with splits (d+1 terminal nodes) treating the residuals as the response (which they are for the first fit)
4.Update predictions
5.Update residuals for new predictions and repeat B times
Tune parameters must be chosen shrinkage, B and d in the boosting tree model.
cvcontrol <- trainControl(method="repeatedcv", number = 10,
allowParallel=TRUE)
grid <- expand.grid(n.trees = c(1000,1500),
interaction.depth=c(1:3),
shrinkage=c(0.01,0.05,0.1),
n.minobsinnode=c(20))
capture<-capture.output(train.gbm <- train(log(shares) ~ .,
data=train,
method="gbm",
trControl=cvcontrol,
tuneGrid = grid))
train.gbm
## Stochastic Gradient Boosting
##
## 1626 samples
## 53 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 1 times)
## Summary of sample sizes: 1464, 1465, 1465, 1463, 1462, 1463, ...
## Resampling results across tuning parameters:
##
## shrinkage interaction.depth n.trees
## 0.01 1 1000
## 0.01 1 1500
## 0.01 2 1000
## 0.01 2 1500
## 0.01 3 1000
## 0.01 3 1500
## 0.05 1 1000
## 0.05 1 1500
## 0.05 2 1000
## 0.05 2 1500
## 0.05 3 1000
## 0.05 3 1500
## 0.10 1 1000
## 0.10 1 1500
## 0.10 2 1000
## 0.10 2 1500
## 0.10 3 1000
## 0.10 3 1500
## RMSE Rsquared MAE
## 0.7560010 0.2172366 0.5692852
## 0.7539938 0.2208591 0.5682640
## 0.7506120 0.2272458 0.5653875
## 0.7509714 0.2278141 0.5658774
## 0.7493491 0.2302280 0.5653395
## 0.7502291 0.2293532 0.5663041
## 0.7568733 0.2218942 0.5700131
## 0.7618649 0.2156406 0.5740581
## 0.7618550 0.2168585 0.5749532
## 0.7697712 0.2091459 0.5829126
## 0.7700809 0.2078451 0.5847125
## 0.7809774 0.1956284 0.5942251
## 0.7720252 0.2042129 0.5836454
## 0.7823973 0.1946235 0.5913195
## 0.7832403 0.1949746 0.5907059
## 0.8023347 0.1773247 0.6089851
## 0.7994487 0.1809024 0.6105605
## 0.8137505 0.1703397 0.6233481
##
## Tuning parameter 'n.minobsinnode' was
## held constant at a value of 20
## RMSE was used to select the optimal
## model using the smallest value.
## The final values used for the model
## were n.trees = 1000, interaction.depth =
## 3, shrinkage = 0.01 and n.minobsinnode = 20.
boostPred <- predict(train.gbm, newdata = test)
RMSE_boost <- sqrt(mean((test$shares - exp(boostPred))^2))
Comparison
Generally, the model with the lowest RMSE is the best on comparison.
comparison<-data.frame(RMSE_lm, RMSE_lm2, RMSE_lm3, RMSE_lm4, RMSE_back, RMSE_bag, RMSE_rfTrimmed, RMSE_boost, RMSE_regTree)
comparison
## RMSE_lm RMSE_lm2 RMSE_lm3 RMSE_lm4
## 1 9711.245 9375.817 9081.466 7619.852
## RMSE_back RMSE_bag RMSE_rfTrimmed RMSE_boost
## 1 8021.181 7332.038 7296.658 7340.778
## RMSE_regTree
## 1 7600.915
which.min(comparison)
## RMSE_rfTrimmed
## 7
The overall prediction error rate for this data set is very high. This is likely due to the high values of outlier articles with freakishly high shares, that are timely AND viral. These values were NOT removed from analysis, as these are the share metrics that a company would likely want to evaluate for emulation.