<!DOCTYPE html>
ST 558 Project 2
Yan Liu & Mandy Liesch
library(rmarkdown)
library(usethis)
use_git_config(user.name="Mandy Liesch", user.email="amliesch@ncsu.edu")
Introduction
Online News Popularity Data Set summarizes a heterogeneous set of features about articles published by Mashable in a period of two years. The goal is to predict the number of shares in social networks (popularity). Here we first showed some summary statistics and plots about the data grouped by weekdays. Then we create several models to predict the response, shares in different channels. The performance of these models will be evaluated by RMSE. The model having the lowest RMSE will be selected as a winner. The methods of modeling include:
- Regression Tree
- Log Transformed Full Linear Regression Model
- Linear Regression Model Without Day of the Week
- Subset Linear Regression Model #1
- Subset Linear Regression Model #2
- Backward Selection Linear Regression
- Bagged Regression Tree
- Random Forest Model
- Boosted Tree Model
Data preparation
Subset Data by Channel
library(tidyverse)
data_whole<-read_csv("OnlineNewsPopularity/OnlineNewsPopularity.csv")
#create a new variable, channel, to help with the subsetting.
data_whole$channel <- names(data_whole[14:19])[apply(data_whole[14:19],1, match, x = 1)]
data_whole$channel <-sub("data_channel_is_", "", data_whole$channel)
#Subset the data to work on the data channel of interest
#channel_interest = params[[1]]$team
#Get the important data
data_interest<-data_whole%>%
filter(channel==x[[2]]$team)%>%
select(-c(1,14:19,62))
Establish Training Data
Split the data into a training (70% of the data) and test set (30% of the data)
library(caret)
library(rsample)
set.seed(14)
index <- initial_split(data_interest,
prop = 0.7)
train <- training(index)
test <- testing(index)
Data Summaries
Correlation Plots
This graphical function looks at the correlation of all of the different variables against each other.
library(corrplot)
#drop values that are not important (the days of the week)
newTrain<-train[ -c(25:31) ]
lmNewTest<-test[ -c(25:31) ]
#drop the predictor variables
predictTrain<-newTrain[ -c(47) ]
#Calculate the correlation Matrix and round it
res <- cor(predictTrain)
#Plot the correlation matrix values by cluster
corrplot(res, type = "upper", order = "hclust",
tl.col = "black", tl.cex = 0.5)
From the results of this spot, it appears that we likely have some clusters of colinearity.
Table Summary
We summarize the train data of interest in tables grouped by weekdays, showing the pattern of shares in a week.
#create a new variable, weekday, to help with the creating plots.
train$weekday <- names(train[25:31])[apply(train[25:31],1, match, x = 1)]
train$weekday <-sub("weekday_is_", "", train$weekday)
#summarize the train data by weekday.knitr::kable(
summary<-train%>%group_by(weekday)%>%
summarise(Avg=round(mean(shares),0),Sd=round(sd(shares),0),Median=median(shares),IQR=round(IQR(shares),0))
knitr::kable(summary)
| weekday | Avg | Sd | Median | IQR |
|---|---|---|---|---|
| friday | 2332 | 4740 | 1400 | 1341 |
| monday | 3592 | 24700 | 1400 | 1554 |
| saturday | 3743 | 4677 | 2600 | 2025 |
| sunday | 3574 | 5567 | 2100 | 2300 |
| thursday | 3180 | 15285 | 1400 | 1373 |
| tuesday | 3041 | 12209 | 1400 | 1372 |
| wednesday | 2768 | 8815 | 1300 | 1311 |
We summarize the train data of interest in the plots below. The histogram of shares shows that it is not a normal distribution. After log transformation, the distribution of log(share) is more close to a normal distribution.
#histogram of shares and log(shares).
hist(train$shares)
hist(log(train$shares))
Data Plots
Box Plots
We use box plots to show the difference in shares and num_images between weekdays and weekends.If the boxes of weekends are higher than the ones of weekdays, then articles be shared more often during weekends.
g1<-ggplot(train, aes(x=factor(is_weekend,labels=c("No", "Yes")),y=shares))
g1+geom_boxplot(fill="white", width=0.5,lwd=1.5,color='black',outlier.shape = NA)+
scale_y_continuous(limits = quantile(train$shares, c(0.1, 0.9)))+
labs(subtitle = "Shares on weekend",x="On weekend or not")
g2<-ggplot(train, aes(x=factor(is_weekend,labels=c("No", "Yes")),y=num_imgs))
g2+geom_boxplot(fill="white", width=0.5,lwd=1.5,color='black',outlier.shape = NA)+
scale_y_continuous(limits = quantile(train$num_imgs, c(0, 0.95)))+
labs(subtitle = "number of images on weekend",x="On weekend or not")
Linear Model
We can inspect the trend of shares as a function of num_images. If the points show an upward trend, then articles with more images tend to be shared more often. If we see a negative trend then articles with more images tend to be shared less often. We can also observe the difference after the log transformation.
g3<-ggplot(train,aes(x=num_imgs,y=shares))
g3+geom_point()+
labs(subtitle = "num_imgs vs shares")+
scale_y_continuous(limits = quantile(train$shares, c(0, 0.9)))+
scale_x_continuous(limits = quantile(train$num_imgs, c(0, 0.9)))+
geom_smooth(method="lm")
g4<-ggplot(train,aes(x=num_imgs,y=log(shares)))
g4+geom_point()+
labs(subtitle = "num_imgs vs log(shares)")+
scale_y_continuous(limits = quantile(log(train$shares), c(0, 0.9)))+
scale_x_continuous(limits = quantile(train$num_imgs, c(0, 0.9)))+
geom_smooth(method="lm")
#remove weekday from data set
train<-train%>%select(-weekday)
Models
Regression Tree
Classification trees are machine learning algorithms that have several benefits, including the ease of operation, and less pre-processing. Data does not require normalization, scaling, and removal of missing values. The results are usually easy to explain, and stakeholders usually can understand them. A regression tree is a tree that uses numerical values to predict the nodes and tree branches. Despite all of the benefits, the Decision Tree algorithm can’t be used for regression and predicting continuous values, it also does not transfer well to other datasets.
library(tree)
tree.news<-tree(shares~., data=train)
summary(tree.news)
##
## Regression tree:
## tree(formula = shares ~ ., data = train)
## Variables actually used in tree construction:
## [1] "kw_avg_min" "LDA_03"
## Number of terminal nodes: 3
## Residual mean deviance: 185900000 = 8.135e+11 / 4377
## Distribution of residuals:
## Min. 1st Qu. Median
## -145600.0 -1955.0 -1509.0
## Mean 3rd Qu. Max.
## 0.0 -409.4 543100.0
plot(tree.news)
text(tree.news, pretty=0)
yhat.regTree<- predict(tree.news, newdata = test)
yhat.test<-test["shares"]
yhat.regTree<-as.data.frame(yhat.regTree)
meanRegTree<-mean((yhat.regTree$yhat.regTree-yhat.test$shares)^2)
RMSE_regTree<-sqrt(meanRegTree)
These results can vary widely depending on the datasets.
Linear Models
Linear models are very valuable and powerful tools, and are very versatile, and can be applied to many situations. Multiple regression examines the relationship between several independent variables and one dependent variable (in this case, total Shares). Regression models give users the ability to determine the relative influence of one or more predictor variables to the predictor, and it also allows users to identify outliers, or anomalies. The main disadvantages have to do with the input quality of data. Input that is incomplete may lead to wrong conclusions. It also assumes that data is independent, which is not always the case.
There are several different types of linear models. In this project, we use multiple different multiple regression values that were log transformed, representing the full dataset, and several partial subsets with multiple variables removed at different points for multicolinearity reasons.
There are also several different types of variable selection, including forward, backward, and stepwise, which user predefined criteria set the entry and/or exit criteria of the models. Backwards selection starts with a full model, and then removes variables that are least significant one at a time, until the model criteria defined by the user are hit. Forward regression does the opposite, and is not represented here.
Linear Regression After Log Transformation
Transform the response with log, then fit a linear regression model with all the variables. Then calculate the RMSE of the model.
lm<- lm(log(shares)~.,train)
summary(lm)
##
## Call:
## lm(formula = log(shares) ~ ., data = train)
##
## Residuals:
## Min 1Q Median
## -8.1925 -0.4663 -0.1125
## 3Q Max
## 0.3627 5.3852
##
## Coefficients: (3 not defined because of singularities)
## Estimate
## (Intercept) 6.086e+00
## timedelta 2.534e-05
## n_tokens_title -8.081e-04
## n_tokens_content 1.728e-04
## n_unique_tokens 1.211e-01
## n_non_stop_words -1.626e-01
## n_non_stop_unique_tokens 3.378e-01
## num_hrefs 7.512e-03
## num_self_hrefs -4.511e-03
## num_imgs 9.702e-03
## num_videos 7.629e-04
## average_token_length -1.686e-01
## num_keywords 3.940e-02
## kw_min_min 1.562e-03
## kw_max_min 7.168e-05
## kw_avg_min -3.336e-04
## kw_min_max -3.744e-07
## kw_max_max 1.528e-07
## kw_avg_max 1.366e-07
## kw_min_avg 4.826e-06
## kw_max_avg -3.881e-05
## kw_avg_avg 2.919e-04
## self_reference_min_shares -2.407e-06
## self_reference_max_shares -1.806e-06
## self_reference_avg_sharess 5.675e-06
## weekday_is_monday -2.708e-01
## weekday_is_tuesday -2.809e-01
## weekday_is_wednesday -3.148e-01
## weekday_is_thursday -2.889e-01
## weekday_is_friday -2.829e-01
## weekday_is_saturday 3.834e-02
## weekday_is_sunday NA
## is_weekend NA
## LDA_00 3.079e-01
## LDA_01 1.001e-01
## LDA_02 5.375e-02
## LDA_03 1.504e-01
## LDA_04 NA
## global_subjectivity 3.425e-01
## global_sentiment_polarity 3.112e-01
## global_rate_positive_words 1.351e-01
## global_rate_negative_words 6.531e+00
## rate_positive_words 5.995e-01
## rate_negative_words 1.945e-01
## avg_positive_polarity -7.637e-03
## min_positive_polarity -4.165e-01
## max_positive_polarity -2.440e-01
## avg_negative_polarity -2.494e-01
## min_negative_polarity -7.268e-02
## max_negative_polarity 4.467e-01
## title_subjectivity 6.242e-02
## title_sentiment_polarity 8.541e-02
## abs_title_subjectivity 3.176e-01
## abs_title_sentiment_polarity 8.440e-02
## Std. Error
## (Intercept) 2.588e-01
## timedelta 8.295e-05
## n_tokens_title 5.798e-03
## n_tokens_content 5.378e-05
## n_unique_tokens 4.273e-01
## n_non_stop_words 8.421e-01
## n_non_stop_unique_tokens 3.701e-01
## num_hrefs 1.922e-03
## num_self_hrefs 4.830e-03
## num_imgs 3.781e-03
## num_videos 3.646e-03
## average_token_length 4.965e-02
## num_keywords 8.054e-03
## kw_min_min 3.306e-04
## kw_max_min 2.495e-05
## kw_avg_min 1.273e-04
## kw_min_max 1.706e-07
## kw_max_max 1.178e-07
## kw_avg_max 1.823e-07
## kw_min_avg 1.539e-05
## kw_max_avg 4.232e-06
## kw_avg_avg 2.569e-05
## self_reference_min_shares 1.331e-06
## self_reference_max_shares 8.325e-07
## self_reference_avg_sharess 1.990e-06
## weekday_is_monday 5.810e-02
## weekday_is_tuesday 5.832e-02
## weekday_is_wednesday 5.785e-02
## weekday_is_thursday 5.777e-02
## weekday_is_friday 6.099e-02
## weekday_is_saturday 7.935e-02
## weekday_is_sunday NA
## is_weekend NA
## LDA_00 7.984e-02
## LDA_01 1.316e-01
## LDA_02 1.293e-01
## LDA_03 1.467e-01
## LDA_04 NA
## global_subjectivity 1.808e-01
## global_sentiment_polarity 3.852e-01
## global_rate_positive_words 1.508e+00
## global_rate_negative_words 3.579e+00
## rate_positive_words 7.851e-01
## rate_negative_words 8.059e-01
## avg_positive_polarity 2.912e-01
## min_positive_polarity 2.444e-01
## max_positive_polarity 8.732e-02
## avg_negative_polarity 2.847e-01
## min_negative_polarity 1.017e-01
## max_negative_polarity 2.366e-01
## title_subjectivity 6.478e-02
## title_sentiment_polarity 5.970e-02
## abs_title_subjectivity 8.157e-02
## abs_title_sentiment_polarity 9.171e-02
## t value
## (Intercept) 23.514
## timedelta 0.305
## n_tokens_title -0.139
## n_tokens_content 3.213
## n_unique_tokens 0.283
## n_non_stop_words -0.193
## n_non_stop_unique_tokens 0.913
## num_hrefs 3.908
## num_self_hrefs -0.934
## num_imgs 2.566
## num_videos 0.209
## average_token_length -3.397
## num_keywords 4.892
## kw_min_min 4.725
## kw_max_min 2.873
## kw_avg_min -2.621
## kw_min_max -2.194
## kw_max_max 1.297
## kw_avg_max 0.749
## kw_min_avg 0.313
## kw_max_avg -9.171
## kw_avg_avg 11.363
## self_reference_min_shares -1.808
## self_reference_max_shares -2.169
## self_reference_avg_sharess 2.852
## weekday_is_monday -4.660
## weekday_is_tuesday -4.817
## weekday_is_wednesday -5.441
## weekday_is_thursday -5.001
## weekday_is_friday -4.638
## weekday_is_saturday 0.483
## weekday_is_sunday NA
## is_weekend NA
## LDA_00 3.857
## LDA_01 0.761
## LDA_02 0.416
## LDA_03 1.025
## LDA_04 NA
## global_subjectivity 1.894
## global_sentiment_polarity 0.808
## global_rate_positive_words 0.090
## global_rate_negative_words 1.825
## rate_positive_words 0.764
## rate_negative_words 0.241
## avg_positive_polarity -0.026
## min_positive_polarity -1.704
## max_positive_polarity -2.795
## avg_negative_polarity -0.876
## min_negative_polarity -0.715
## max_negative_polarity 1.888
## title_subjectivity 0.964
## title_sentiment_polarity 1.431
## abs_title_subjectivity 3.893
## abs_title_sentiment_polarity 0.920
## Pr(>|t|)
## (Intercept) < 2e-16
## timedelta 0.760047
## n_tokens_title 0.889155
## n_tokens_content 0.001322
## n_unique_tokens 0.776901
## n_non_stop_words 0.846879
## n_non_stop_unique_tokens 0.361476
## num_hrefs 9.46e-05
## num_self_hrefs 0.350381
## num_imgs 0.010327
## num_videos 0.834281
## average_token_length 0.000688
## num_keywords 1.04e-06
## kw_min_min 2.37e-06
## kw_max_min 0.004081
## kw_avg_min 0.008794
## kw_min_max 0.028283
## kw_max_max 0.194744
## kw_avg_max 0.453641
## kw_min_avg 0.753943
## kw_max_avg < 2e-16
## kw_avg_avg < 2e-16
## self_reference_min_shares 0.070687
## self_reference_max_shares 0.030116
## self_reference_avg_sharess 0.004360
## weekday_is_monday 3.25e-06
## weekday_is_tuesday 1.51e-06
## weekday_is_wednesday 5.60e-08
## weekday_is_thursday 5.93e-07
## weekday_is_friday 3.62e-06
## weekday_is_saturday 0.628971
## weekday_is_sunday NA
## is_weekend NA
## LDA_00 0.000116
## LDA_01 0.446822
## LDA_02 0.677554
## LDA_03 0.305221
## LDA_04 NA
## global_subjectivity 0.058339
## global_sentiment_polarity 0.419230
## global_rate_positive_words 0.928649
## global_rate_negative_words 0.068142
## rate_positive_words 0.445141
## rate_negative_words 0.809275
## avg_positive_polarity 0.979078
## min_positive_polarity 0.088455
## max_positive_polarity 0.005219
## avg_negative_polarity 0.381013
## min_negative_polarity 0.474818
## max_negative_polarity 0.059120
## title_subjectivity 0.335313
## title_sentiment_polarity 0.152607
## abs_title_subjectivity 0.000100
## abs_title_sentiment_polarity 0.357502
##
## (Intercept) ***
## timedelta
## n_tokens_title
## n_tokens_content **
## n_unique_tokens
## n_non_stop_words
## n_non_stop_unique_tokens
## num_hrefs ***
## num_self_hrefs
## num_imgs *
## num_videos
## average_token_length ***
## num_keywords ***
## kw_min_min ***
## kw_max_min **
## kw_avg_min **
## kw_min_max *
## kw_max_max
## kw_avg_max
## kw_min_avg
## kw_max_avg ***
## kw_avg_avg ***
## self_reference_min_shares .
## self_reference_max_shares *
## self_reference_avg_sharess **
## weekday_is_monday ***
## weekday_is_tuesday ***
## weekday_is_wednesday ***
## weekday_is_thursday ***
## weekday_is_friday ***
## weekday_is_saturday
## weekday_is_sunday
## is_weekend
## LDA_00 ***
## LDA_01
## LDA_02
## LDA_03
## LDA_04
## global_subjectivity .
## global_sentiment_polarity
## global_rate_positive_words
## global_rate_negative_words .
## rate_positive_words
## rate_negative_words
## avg_positive_polarity
## min_positive_polarity .
## max_positive_polarity **
## avg_negative_polarity
## min_negative_polarity
## max_negative_polarity .
## title_subjectivity
## title_sentiment_polarity
## abs_title_subjectivity ***
## abs_title_sentiment_polarity
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01
## '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7729 on 4329 degrees of freedom
## Multiple R-squared: 0.1705, Adjusted R-squared: 0.1609
## F-statistic: 17.8 on 50 and 4329 DF, p-value: < 2.2e-16
yhat_lm<-predict(lm,test)
RMSE_lm<-sqrt(mean((test$shares - exp(yhat_lm))^2))
Plot the lm Residuals
par(mfrow=c(2,2))
plot(lm)
Looking at our residuals, there seems to be skewing in both direction, indicating that the data, even after transformation, has extreme outliers in both directions.
Model Removing the Day Variable
#look at the data for multicolinearity
lmNewTest<-test[ -c(25:31) ]
lm2<- lm(log(shares)~.,newTrain)
yhat_lm2<-predict(lm2,lmNewTest)
RMSE_lm2<-sqrt(mean((lmNewTest$shares - exp(yhat_lm2))^2))
library(mctest)
omcdiag(lm2)
##
## Call:
## omcdiag(mod = lm2)
##
##
## Overall Multicollinearity Diagnostics
##
## MC Results
## Determinant |X'X|: 0.000000e+00
## Farrar Chi-Square: 2.935100e+05
## Red Indicator: 1.638000e-01
## Sum of Lambda Inverse: 9.914284e+14
## Theil's Method: 2.453890e+01
## Condition Number: 3.746208e+07
## detection
## Determinant |X'X|: 1
## Farrar Chi-Square: 1
## Red Indicator: 0
## Sum of Lambda Inverse: 1
## Theil's Method: 1
## Condition Number: 1
##
## 1 --> COLLINEARITY is detected by the test
## 0 --> COLLINEARITY is not detected by the test
imcdiag(lm2)
##
## Call:
## imcdiag(mod = lm2)
##
##
## All Individual Multicollinearity Diagnostics Result
##
## VIF
## timedelta 2.1757
## n_tokens_title 1.1435
## n_tokens_content 3.9679
## n_unique_tokens 13.8126
## n_non_stop_words 21.2526
## n_non_stop_unique_tokens 9.3499
## num_hrefs 1.9298
## num_self_hrefs 1.2541
## num_imgs 1.2475
## num_videos 1.2117
## average_token_length 2.9043
## num_keywords 1.8275
## kw_min_min 4.2388
## kw_max_min 13.8143
## kw_avg_min 15.0843
## kw_min_max 1.4571
## kw_max_max 5.0276
## kw_avg_max 5.2986
## kw_min_avg 2.0548
## kw_max_avg 7.7935
## kw_avg_avg 10.2498
## self_reference_min_shares 9.1779
## self_reference_max_shares 13.0450
## self_reference_avg_sharess 29.5144
## is_weekend 1.0818
## LDA_00 Inf
## LDA_01 Inf
## LDA_02 Inf
## LDA_03 Inf
## LDA_04 Inf
## global_subjectivity 1.6952
## global_sentiment_polarity 7.2633
## global_rate_positive_words 4.4712
## global_rate_negative_words 6.9114
## rate_positive_words 97.2666
## rate_negative_words 92.5996
## avg_positive_polarity 4.1145
## min_positive_polarity 1.9264
## max_positive_polarity 2.6586
## avg_negative_polarity 7.5702
## min_negative_polarity 5.7358
## max_negative_polarity 3.0602
## title_subjectivity 2.7112
## title_sentiment_polarity 1.5039
## abs_title_subjectivity 1.7727
## abs_title_sentiment_polarity 2.7329
## TOL
## timedelta 0.4596
## n_tokens_title 0.8745
## n_tokens_content 0.2520
## n_unique_tokens 0.0724
## n_non_stop_words 0.0471
## n_non_stop_unique_tokens 0.1070
## num_hrefs 0.5182
## num_self_hrefs 0.7974
## num_imgs 0.8016
## num_videos 0.8253
## average_token_length 0.3443
## num_keywords 0.5472
## kw_min_min 0.2359
## kw_max_min 0.0724
## kw_avg_min 0.0663
## kw_min_max 0.6863
## kw_max_max 0.1989
## kw_avg_max 0.1887
## kw_min_avg 0.4867
## kw_max_avg 0.1283
## kw_avg_avg 0.0976
## self_reference_min_shares 0.1090
## self_reference_max_shares 0.0767
## self_reference_avg_sharess 0.0339
## is_weekend 0.9244
## LDA_00 0.0000
## LDA_01 0.0000
## LDA_02 0.0000
## LDA_03 0.0000
## LDA_04 0.0000
## global_subjectivity 0.5899
## global_sentiment_polarity 0.1377
## global_rate_positive_words 0.2237
## global_rate_negative_words 0.1447
## rate_positive_words 0.0103
## rate_negative_words 0.0108
## avg_positive_polarity 0.2430
## min_positive_polarity 0.5191
## max_positive_polarity 0.3761
## avg_negative_polarity 0.1321
## min_negative_polarity 0.1743
## max_negative_polarity 0.3268
## title_subjectivity 0.3688
## title_sentiment_polarity 0.6649
## abs_title_subjectivity 0.5641
## abs_title_sentiment_polarity 0.3659
## Wi
## timedelta 113.2373
## n_tokens_title 13.8182
## n_tokens_content 285.8444
## n_unique_tokens 1233.9913
## n_non_stop_words 1950.5481
## n_non_stop_unique_tokens 804.1921
## num_hrefs 89.5479
## num_self_hrefs 24.4746
## num_imgs 23.8383
## num_videos 20.3892
## average_token_length 183.4089
## num_keywords 79.6961
## kw_min_min 311.9330
## kw_max_min 1234.1587
## kw_avg_min 1356.4785
## kw_min_max 44.0259
## kw_max_max 387.9048
## kw_avg_max 414.0039
## kw_min_avg 101.5854
## kw_max_avg 654.2867
## kw_avg_avg 890.8597
## self_reference_min_shares 787.6217
## self_reference_max_shares 1160.0713
## self_reference_avg_sharess 2746.2573
## is_weekend 7.8767
## LDA_00 Inf
## LDA_01 Inf
## LDA_02 Inf
## LDA_03 Inf
## LDA_04 Inf
## global_subjectivity 66.9576
## global_sentiment_polarity 603.2208
## global_rate_positive_words 334.3134
## global_rate_negative_words 569.3334
## rate_positive_words 9271.5440
## rate_negative_words 8822.0623
## avg_positive_polarity 299.9627
## min_positive_polarity 89.2256
## max_positive_polarity 159.7404
## avg_negative_polarity 632.7785
## min_negative_polarity 456.1134
## max_negative_polarity 198.4165
## title_subjectivity 164.8044
## title_sentiment_polarity 48.5307
## abs_title_subjectivity 74.4159
## abs_title_sentiment_polarity 166.8955
## Fi
## timedelta 115.8376
## n_tokens_title 14.1355
## n_tokens_content 292.4083
## n_unique_tokens 1262.3277
## n_non_stop_words 1995.3390
## n_non_stop_unique_tokens 822.6590
## num_hrefs 91.6042
## num_self_hrefs 25.0366
## num_imgs 24.3857
## num_videos 20.8574
## average_token_length 187.6205
## num_keywords 81.5261
## kw_min_min 319.0960
## kw_max_min 1262.4990
## kw_avg_min 1387.6277
## kw_min_max 45.0368
## kw_max_max 396.8123
## kw_avg_max 423.5107
## kw_min_avg 103.9181
## kw_max_avg 669.3112
## kw_avg_avg 911.3167
## self_reference_min_shares 805.7081
## self_reference_max_shares 1186.7103
## self_reference_avg_sharess 2809.3203
## is_weekend 8.0576
## LDA_00 Inf
## LDA_01 Inf
## LDA_02 Inf
## LDA_03 Inf
## LDA_04 Inf
## global_subjectivity 68.4952
## global_sentiment_polarity 617.0727
## global_rate_positive_words 341.9904
## global_rate_negative_words 582.4071
## rate_positive_words 9484.4488
## rate_negative_words 9024.6455
## avg_positive_polarity 306.8508
## min_positive_polarity 91.2745
## max_positive_polarity 163.4085
## avg_negative_polarity 647.3092
## min_negative_polarity 466.5872
## max_negative_polarity 202.9728
## title_subjectivity 168.5889
## title_sentiment_polarity 49.6451
## abs_title_subjectivity 76.1247
## abs_title_sentiment_polarity 170.7280
## Leamer
## timedelta 0.6779
## n_tokens_title 0.9352
## n_tokens_content 0.5020
## n_unique_tokens 0.2691
## n_non_stop_words 0.2169
## n_non_stop_unique_tokens 0.3270
## num_hrefs 0.7199
## num_self_hrefs 0.8930
## num_imgs 0.8953
## num_videos 0.9085
## average_token_length 0.5868
## num_keywords 0.7397
## kw_min_min 0.4857
## kw_max_min 0.2691
## kw_avg_min 0.2575
## kw_min_max 0.8284
## kw_max_max 0.4460
## kw_avg_max 0.4344
## kw_min_avg 0.6976
## kw_max_avg 0.3582
## kw_avg_avg 0.3124
## self_reference_min_shares 0.3301
## self_reference_max_shares 0.2769
## self_reference_avg_sharess 0.1841
## is_weekend 0.9615
## LDA_00 0.0000
## LDA_01 0.0000
## LDA_02 0.0000
## LDA_03 0.0000
## LDA_04 0.0000
## global_subjectivity 0.7680
## global_sentiment_polarity 0.3711
## global_rate_positive_words 0.4729
## global_rate_negative_words 0.3804
## rate_positive_words 0.1014
## rate_negative_words 0.1039
## avg_positive_polarity 0.4930
## min_positive_polarity 0.7205
## max_positive_polarity 0.6133
## avg_negative_polarity 0.3635
## min_negative_polarity 0.4175
## max_negative_polarity 0.5716
## title_subjectivity 0.6073
## title_sentiment_polarity 0.8154
## abs_title_subjectivity 0.7511
## abs_title_sentiment_polarity 0.6049
## CVIF
## timedelta 3.1123
## n_tokens_title 1.6357
## n_tokens_content 5.6760
## n_unique_tokens 19.7584
## n_non_stop_words 30.4012
## n_non_stop_unique_tokens 13.3748
## num_hrefs 2.7605
## num_self_hrefs 1.7940
## num_imgs 1.7845
## num_videos 1.7333
## average_token_length 4.1546
## num_keywords 2.6142
## kw_min_min 6.0635
## kw_max_min 19.7609
## kw_avg_min 21.5777
## kw_min_max 2.0844
## kw_max_max 7.1919
## kw_avg_max 7.5795
## kw_min_avg 2.9393
## kw_max_avg 11.1483
## kw_avg_avg 14.6621
## self_reference_min_shares 13.1287
## self_reference_max_shares 18.6605
## self_reference_avg_sharess 42.2195
## is_weekend 1.5475
## LDA_00 Inf
## LDA_01 Inf
## LDA_02 Inf
## LDA_03 Inf
## LDA_04 Inf
## global_subjectivity 2.4250
## global_sentiment_polarity 10.3899
## global_rate_positive_words 6.3959
## global_rate_negative_words 9.8866
## rate_positive_words 139.1370
## rate_negative_words 132.4610
## avg_positive_polarity 5.8857
## min_positive_polarity 2.7557
## max_positive_polarity 3.8030
## avg_negative_polarity 10.8289
## min_negative_polarity 8.2049
## max_negative_polarity 4.3775
## title_subjectivity 3.8782
## title_sentiment_polarity 2.1513
## abs_title_subjectivity 2.5357
## abs_title_sentiment_polarity 3.9093
## Klein
## timedelta 1
## n_tokens_title 0
## n_tokens_content 1
## n_unique_tokens 1
## n_non_stop_words 1
## n_non_stop_unique_tokens 1
## num_hrefs 1
## num_self_hrefs 1
## num_imgs 1
## num_videos 1
## average_token_length 1
## num_keywords 1
## kw_min_min 1
## kw_max_min 1
## kw_avg_min 1
## kw_min_max 1
## kw_max_max 1
## kw_avg_max 1
## kw_min_avg 1
## kw_max_avg 1
## kw_avg_avg 1
## self_reference_min_shares 1
## self_reference_max_shares 1
## self_reference_avg_sharess 1
## is_weekend 0
## LDA_00 1
## LDA_01 1
## LDA_02 1
## LDA_03 1
## LDA_04 1
## global_subjectivity 1
## global_sentiment_polarity 1
## global_rate_positive_words 1
## global_rate_negative_words 1
## rate_positive_words 1
## rate_negative_words 1
## avg_positive_polarity 1
## min_positive_polarity 1
## max_positive_polarity 1
## avg_negative_polarity 1
## min_negative_polarity 1
## max_negative_polarity 1
## title_subjectivity 1
## title_sentiment_polarity 1
## abs_title_subjectivity 1
## abs_title_sentiment_polarity 1
## IND1
## timedelta 0.0047
## n_tokens_title 0.0089
## n_tokens_content 0.0026
## n_unique_tokens 0.0007
## n_non_stop_words 0.0005
## n_non_stop_unique_tokens 0.0011
## num_hrefs 0.0053
## num_self_hrefs 0.0081
## num_imgs 0.0081
## num_videos 0.0084
## average_token_length 0.0035
## num_keywords 0.0056
## kw_min_min 0.0024
## kw_max_min 0.0007
## kw_avg_min 0.0007
## kw_min_max 0.0070
## kw_max_max 0.0020
## kw_avg_max 0.0019
## kw_min_avg 0.0049
## kw_max_avg 0.0013
## kw_avg_avg 0.0010
## self_reference_min_shares 0.0011
## self_reference_max_shares 0.0008
## self_reference_avg_sharess 0.0003
## is_weekend 0.0094
## LDA_00 0.0000
## LDA_01 0.0000
## LDA_02 0.0000
## LDA_03 0.0000
## LDA_04 0.0000
## global_subjectivity 0.0060
## global_sentiment_polarity 0.0014
## global_rate_positive_words 0.0023
## global_rate_negative_words 0.0015
## rate_positive_words 0.0001
## rate_negative_words 0.0001
## avg_positive_polarity 0.0025
## min_positive_polarity 0.0053
## max_positive_polarity 0.0038
## avg_negative_polarity 0.0013
## min_negative_polarity 0.0018
## max_negative_polarity 0.0033
## title_subjectivity 0.0037
## title_sentiment_polarity 0.0067
## abs_title_subjectivity 0.0057
## abs_title_sentiment_polarity 0.0037
## IND2
## timedelta 0.7721
## n_tokens_title 0.1793
## n_tokens_content 1.0687
## n_unique_tokens 1.3253
## n_non_stop_words 1.3615
## n_non_stop_unique_tokens 1.2759
## num_hrefs 0.6884
## num_self_hrefs 0.2895
## num_imgs 0.2835
## num_videos 0.2496
## average_token_length 0.9368
## num_keywords 0.6469
## kw_min_min 1.0917
## kw_max_min 1.3253
## kw_avg_min 1.3340
## kw_min_max 0.4482
## kw_max_max 1.1446
## kw_avg_max 1.1591
## kw_min_avg 0.7334
## kw_max_avg 1.2454
## kw_avg_avg 1.2893
## self_reference_min_shares 1.2731
## self_reference_max_shares 1.3192
## self_reference_avg_sharess 1.3803
## is_weekend 0.1080
## LDA_00 1.4287
## LDA_01 1.4287
## LDA_02 1.4287
## LDA_03 1.4287
## LDA_04 1.4287
## global_subjectivity 0.5859
## global_sentiment_polarity 1.2320
## global_rate_positive_words 1.1092
## global_rate_negative_words 1.2220
## rate_positive_words 1.4141
## rate_negative_words 1.4133
## avg_positive_polarity 1.0815
## min_positive_polarity 0.6871
## max_positive_polarity 0.8913
## avg_negative_polarity 1.2400
## min_negative_polarity 1.1796
## max_negative_polarity 0.9619
## title_subjectivity 0.9018
## title_sentiment_polarity 0.4787
## abs_title_subjectivity 0.6228
## abs_title_sentiment_polarity 0.9059
##
## 1 --> COLLINEARITY is detected by the test
## 0 --> COLLINEARITY is not detected by the test
##
## timedelta , n_tokens_title , n_unique_tokens , n_non_stop_words , n_non_stop_unique_tokens , num_self_hrefs , num_videos , kw_max_max , kw_avg_max , kw_min_avg , self_reference_min_shares , LDA_01 , LDA_02 , LDA_03 , LDA_04 , global_subjectivity , global_sentiment_polarity , global_rate_positive_words , global_rate_negative_words , rate_positive_words , rate_negative_words , avg_positive_polarity , max_positive_polarity , avg_negative_polarity , min_negative_polarity , max_negative_polarity , title_subjectivity , abs_title_subjectivity , coefficient(s) are non-significant may be due to multicollinearity
##
## R-square of y on all x: 0.1702
##
## * use method argument to check which regressors may be the reason of collinearity
## ===================================
Looking at all of the VIF values, we are going to start by removing all of the LDA Values, and the positive word rate to remove all “infinite” VIF values.
First Multicolinearity Trim
The mctest package was used to calculate the VIF values of multicolinearity.
toRemove<-c( "LDA_01", "LDA_02", "LDA_03", "LDA_04", "rate_positive_words")
trimTrain1 <- newTrain[, ! names(newTrain) %in% toRemove, drop = F]
lmNewTest3<-lmNewTest[, ! names(newTrain) %in% toRemove, drop = F]
#Repeat linear Model process
lm3<- lm(log(shares)~., trimTrain1)
yhat_lm3<-predict(lm3,lmNewTest3)
RMSE_lm3<-sqrt(mean((lmNewTest3$shares - exp(yhat_lm3))^2))
imcdiag(lm3)
##
## Call:
## imcdiag(mod = lm3)
##
##
## All Individual Multicollinearity Diagnostics Result
##
## VIF
## timedelta 2.1637
## n_tokens_title 1.1423
## n_tokens_content 3.9547
## n_unique_tokens 13.7044
## n_non_stop_words 3.6273
## n_non_stop_unique_tokens 9.2998
## num_hrefs 1.9273
## num_self_hrefs 1.2451
## num_imgs 1.2433
## num_videos 1.1902
## average_token_length 2.8796
## num_keywords 1.8195
## kw_min_min 4.2318
## kw_max_min 13.7813
## kw_avg_min 15.0235
## kw_min_max 1.4497
## kw_max_max 5.0066
## kw_avg_max 5.1841
## kw_min_avg 2.0443
## kw_max_avg 7.7040
## kw_avg_avg 10.0804
## self_reference_min_shares 9.1525
## self_reference_max_shares 13.0262
## self_reference_avg_sharess 29.4418
## is_weekend 1.0817
## LDA_00 1.1403
## global_subjectivity 1.6838
## global_sentiment_polarity 7.2594
## global_rate_positive_words 4.4370
## global_rate_negative_words 6.8701
## rate_negative_words 9.0766
## avg_positive_polarity 4.1111
## min_positive_polarity 1.9225
## max_positive_polarity 2.6542
## avg_negative_polarity 7.5461
## min_negative_polarity 5.7282
## max_negative_polarity 3.0527
## title_subjectivity 2.7097
## title_sentiment_polarity 1.5030
## abs_title_subjectivity 1.7705
## abs_title_sentiment_polarity 2.7321
## TOL
## timedelta 0.4622
## n_tokens_title 0.8755
## n_tokens_content 0.2529
## n_unique_tokens 0.0730
## n_non_stop_words 0.2757
## n_non_stop_unique_tokens 0.1075
## num_hrefs 0.5189
## num_self_hrefs 0.8031
## num_imgs 0.8043
## num_videos 0.8402
## average_token_length 0.3473
## num_keywords 0.5496
## kw_min_min 0.2363
## kw_max_min 0.0726
## kw_avg_min 0.0666
## kw_min_max 0.6898
## kw_max_max 0.1997
## kw_avg_max 0.1929
## kw_min_avg 0.4892
## kw_max_avg 0.1298
## kw_avg_avg 0.0992
## self_reference_min_shares 0.1093
## self_reference_max_shares 0.0768
## self_reference_avg_sharess 0.0340
## is_weekend 0.9245
## LDA_00 0.8770
## global_subjectivity 0.5939
## global_sentiment_polarity 0.1378
## global_rate_positive_words 0.2254
## global_rate_negative_words 0.1456
## rate_negative_words 0.1102
## avg_positive_polarity 0.2432
## min_positive_polarity 0.5202
## max_positive_polarity 0.3768
## avg_negative_polarity 0.1325
## min_negative_polarity 0.1746
## max_negative_polarity 0.3276
## title_subjectivity 0.3690
## title_sentiment_polarity 0.6653
## abs_title_subjectivity 0.5648
## abs_title_sentiment_polarity 0.3660
## Wi
## timedelta 126.2361
## n_tokens_title 15.4317
## n_tokens_content 320.5086
## n_unique_tokens 1378.1060
## n_non_stop_words 284.9962
## n_non_stop_unique_tokens 900.3232
## num_hrefs 100.5862
## num_self_hrefs 26.5889
## num_imgs 26.3971
## num_videos 20.6332
## average_token_length 203.8867
## num_keywords 88.8982
## kw_min_min 350.5674
## kw_max_min 1386.4492
## kw_avg_min 1521.2003
## kw_min_max 48.7786
## kw_max_max 434.6155
## kw_avg_max 453.8756
## kw_min_avg 113.2765
## kw_max_avg 727.2113
## kw_avg_avg 984.9967
## self_reference_min_shares 884.3443
## self_reference_max_shares 1304.5450
## self_reference_avg_sharess 3085.2201
## is_weekend 8.8620
## LDA_00 15.2155
## global_subjectivity 74.1745
## global_sentiment_polarity 678.9848
## global_rate_positive_words 372.8255
## global_rate_negative_words 636.7594
## rate_negative_words 876.1099
## avg_positive_polarity 337.4762
## min_positive_polarity 100.0663
## max_positive_polarity 179.4343
## avg_negative_polarity 710.0900
## min_negative_polarity 512.8949
## max_negative_polarity 222.6647
## title_subjectivity 185.4600
## title_sentiment_polarity 54.5680
## abs_title_subjectivity 83.5766
## abs_title_sentiment_polarity 187.8872
## Fi
## timedelta 129.5028
## n_tokens_title 15.8310
## n_tokens_content 328.8026
## n_unique_tokens 1413.7678
## n_non_stop_words 292.3712
## n_non_stop_unique_tokens 923.6212
## num_hrefs 103.1891
## num_self_hrefs 27.2770
## num_imgs 27.0802
## num_videos 21.1671
## average_token_length 209.1627
## num_keywords 91.1986
## kw_min_min 359.6392
## kw_max_min 1422.3269
## kw_avg_min 1560.5650
## kw_min_max 50.0409
## kw_max_max 445.8622
## kw_avg_max 465.6207
## kw_min_avg 116.2078
## kw_max_avg 746.0297
## kw_avg_avg 1010.4858
## self_reference_min_shares 907.2288
## self_reference_max_shares 1338.3032
## self_reference_avg_sharess 3165.0576
## is_weekend 9.0913
## LDA_00 15.6092
## global_subjectivity 76.0939
## global_sentiment_polarity 696.5552
## global_rate_positive_words 382.4733
## global_rate_negative_words 653.2371
## rate_negative_words 898.7814
## avg_positive_polarity 346.2093
## min_positive_polarity 102.6558
## max_positive_polarity 184.0776
## avg_negative_polarity 728.4652
## min_negative_polarity 526.1673
## max_negative_polarity 228.4266
## title_subjectivity 190.2592
## title_sentiment_polarity 55.9801
## abs_title_subjectivity 85.7393
## abs_title_sentiment_polarity 192.7492
## Leamer
## timedelta 0.6798
## n_tokens_title 0.9357
## n_tokens_content 0.5029
## n_unique_tokens 0.2701
## n_non_stop_words 0.5251
## n_non_stop_unique_tokens 0.3279
## num_hrefs 0.7203
## num_self_hrefs 0.8962
## num_imgs 0.8968
## num_videos 0.9166
## average_token_length 0.5893
## num_keywords 0.7413
## kw_min_min 0.4861
## kw_max_min 0.2694
## kw_avg_min 0.2580
## kw_min_max 0.8305
## kw_max_max 0.4469
## kw_avg_max 0.4392
## kw_min_avg 0.6994
## kw_max_avg 0.3603
## kw_avg_avg 0.3150
## self_reference_min_shares 0.3305
## self_reference_max_shares 0.2771
## self_reference_avg_sharess 0.1843
## is_weekend 0.9615
## LDA_00 0.9365
## global_subjectivity 0.7706
## global_sentiment_polarity 0.3712
## global_rate_positive_words 0.4747
## global_rate_negative_words 0.3815
## rate_negative_words 0.3319
## avg_positive_polarity 0.4932
## min_positive_polarity 0.7212
## max_positive_polarity 0.6138
## avg_negative_polarity 0.3640
## min_negative_polarity 0.4178
## max_negative_polarity 0.5723
## title_subjectivity 0.6075
## title_sentiment_polarity 0.8157
## abs_title_subjectivity 0.7515
## abs_title_sentiment_polarity 0.6050
## CVIF
## timedelta 3.0027
## n_tokens_title 1.5852
## n_tokens_content 5.4881
## n_unique_tokens 19.0183
## n_non_stop_words 5.0338
## n_non_stop_unique_tokens 12.9059
## num_hrefs 2.6746
## num_self_hrefs 1.7279
## num_imgs 1.7255
## num_videos 1.6517
## average_token_length 3.9962
## num_keywords 2.5251
## kw_min_min 5.8727
## kw_max_min 19.1251
## kw_avg_min 20.8490
## kw_min_max 2.0118
## kw_max_max 6.9479
## kw_avg_max 7.1943
## kw_min_avg 2.8369
## kw_max_avg 10.6912
## kw_avg_avg 13.9892
## self_reference_min_shares 12.7015
## self_reference_max_shares 18.0773
## self_reference_avg_sharess 40.8580
## is_weekend 1.5011
## LDA_00 1.5824
## global_subjectivity 2.3367
## global_sentiment_polarity 10.0742
## global_rate_positive_words 6.1574
## global_rate_negative_words 9.5340
## rate_negative_words 12.5961
## avg_positive_polarity 5.7052
## min_positive_polarity 2.6679
## max_positive_polarity 3.6833
## avg_negative_polarity 10.4722
## min_negative_polarity 7.9494
## max_negative_polarity 4.2364
## title_subjectivity 3.7604
## title_sentiment_polarity 2.0859
## abs_title_subjectivity 2.4570
## abs_title_sentiment_polarity 3.7915
## Klein
## timedelta 1
## n_tokens_title 0
## n_tokens_content 1
## n_unique_tokens 1
## n_non_stop_words 1
## n_non_stop_unique_tokens 1
## num_hrefs 1
## num_self_hrefs 1
## num_imgs 1
## num_videos 0
## average_token_length 1
## num_keywords 1
## kw_min_min 1
## kw_max_min 1
## kw_avg_min 1
## kw_min_max 1
## kw_max_max 1
## kw_avg_max 1
## kw_min_avg 1
## kw_max_avg 1
## kw_avg_avg 1
## self_reference_min_shares 1
## self_reference_max_shares 1
## self_reference_avg_sharess 1
## is_weekend 0
## LDA_00 0
## global_subjectivity 1
## global_sentiment_polarity 1
## global_rate_positive_words 1
## global_rate_negative_words 1
## rate_negative_words 1
## avg_positive_polarity 1
## min_positive_polarity 1
## max_positive_polarity 1
## avg_negative_polarity 1
## min_negative_polarity 1
## max_negative_polarity 1
## title_subjectivity 1
## title_sentiment_polarity 1
## abs_title_subjectivity 1
## abs_title_sentiment_polarity 1
## IND1
## timedelta 0.0043
## n_tokens_title 0.0081
## n_tokens_content 0.0023
## n_unique_tokens 0.0007
## n_non_stop_words 0.0025
## n_non_stop_unique_tokens 0.0010
## num_hrefs 0.0048
## num_self_hrefs 0.0074
## num_imgs 0.0074
## num_videos 0.0077
## average_token_length 0.0032
## num_keywords 0.0051
## kw_min_min 0.0022
## kw_max_min 0.0007
## kw_avg_min 0.0006
## kw_min_max 0.0064
## kw_max_max 0.0018
## kw_avg_max 0.0018
## kw_min_avg 0.0045
## kw_max_avg 0.0012
## kw_avg_avg 0.0009
## self_reference_min_shares 0.0010
## self_reference_max_shares 0.0007
## self_reference_avg_sharess 0.0003
## is_weekend 0.0085
## LDA_00 0.0081
## global_subjectivity 0.0055
## global_sentiment_polarity 0.0013
## global_rate_positive_words 0.0021
## global_rate_negative_words 0.0013
## rate_negative_words 0.0010
## avg_positive_polarity 0.0022
## min_positive_polarity 0.0048
## max_positive_polarity 0.0035
## avg_negative_polarity 0.0012
## min_negative_polarity 0.0016
## max_negative_polarity 0.0030
## title_subjectivity 0.0034
## title_sentiment_polarity 0.0061
## abs_title_subjectivity 0.0052
## abs_title_sentiment_polarity 0.0034
## IND2
## timedelta 0.8501
## n_tokens_title 0.1969
## n_tokens_content 1.1809
## n_unique_tokens 1.4653
## n_non_stop_words 1.1448
## n_non_stop_unique_tokens 1.4106
## num_hrefs 0.7605
## num_self_hrefs 0.3112
## num_imgs 0.3094
## num_videos 0.2526
## average_token_length 1.0317
## num_keywords 0.7119
## kw_min_min 1.2071
## kw_max_min 1.4659
## kw_avg_min 1.4754
## kw_min_max 0.4903
## kw_max_max 1.2649
## kw_avg_max 1.2757
## kw_min_avg 0.8074
## kw_max_avg 1.3754
## kw_avg_avg 1.4238
## self_reference_min_shares 1.4079
## self_reference_max_shares 1.4593
## self_reference_avg_sharess 1.5269
## is_weekend 0.1194
## LDA_00 0.1944
## global_subjectivity 0.6419
## global_sentiment_polarity 1.3629
## global_rate_positive_words 1.2244
## global_rate_negative_words 1.3505
## rate_negative_words 1.4065
## avg_positive_polarity 1.1961
## min_positive_polarity 0.7584
## max_positive_polarity 0.9851
## avg_negative_polarity 1.3711
## min_negative_polarity 1.3047
## max_negative_polarity 1.0628
## title_subjectivity 0.9973
## title_sentiment_polarity 0.5290
## abs_title_subjectivity 0.6878
## abs_title_sentiment_polarity 1.0021
##
## 1 --> COLLINEARITY is detected by the test
## 0 --> COLLINEARITY is not detected by the test
##
## timedelta , n_tokens_title , n_unique_tokens , n_non_stop_words , n_non_stop_unique_tokens , num_self_hrefs , num_videos , kw_max_max , kw_avg_max , kw_min_avg , self_reference_min_shares , global_sentiment_polarity , global_rate_positive_words , global_rate_negative_words , rate_negative_words , avg_positive_polarity , min_positive_polarity , avg_negative_polarity , min_negative_polarity , max_negative_polarity , title_subjectivity , title_sentiment_polarity , abs_title_sentiment_polarity , coefficient(s) are non-significant may be due to multicollinearity
##
## R-square of y on all x: 0.1698
##
## * use method argument to check which regressors may be the reason of collinearity
## ===================================
This improves the model multicolinearity, but we are still left with some. We then pare down and select those models with the next highest VIF removed one at a time, until all values are below 5.
Second Mulitcolinearity Trim
toRemove<-c("self_reference_avg_sharess", "kw_avg_min", "n_unique_tokens", "rate_negative_words", "kw_avg_avg", "n_non_stop_words", "global_sentiment_polarity", "avg_negative_polarity", "kw_max_max")
trimTrain2 <- trimTrain1[, ! names(trimTrain1) %in% toRemove, drop = F]
#Repeat linear Model process
lm4<- lm(log(shares)~., trimTrain2)
imcdiag(lm4)
##
## Call:
## imcdiag(mod = lm4)
##
##
## All Individual Multicollinearity Diagnostics Result
##
## VIF
## timedelta 1.8213
## n_tokens_title 1.1307
## n_tokens_content 2.7149
## n_non_stop_unique_tokens 2.0964
## num_hrefs 1.8407
## num_self_hrefs 1.2044
## num_imgs 1.2047
## num_videos 1.1198
## average_token_length 1.4163
## num_keywords 1.6474
## kw_min_min 2.5520
## kw_max_min 1.0904
## kw_min_max 1.4115
## kw_avg_max 3.7702
## kw_min_avg 1.4495
## kw_max_avg 1.2600
## self_reference_min_shares 1.4091
## self_reference_max_shares 1.5869
## is_weekend 1.0708
## LDA_00 1.1240
## global_subjectivity 1.4647
## global_rate_positive_words 1.5587
## global_rate_negative_words 1.4034
## avg_positive_polarity 2.5132
## min_positive_polarity 1.7910
## max_positive_polarity 2.5514
## min_negative_polarity 1.9323
## max_negative_polarity 1.2232
## title_subjectivity 2.6907
## title_sentiment_polarity 1.4747
## abs_title_subjectivity 1.7636
## abs_title_sentiment_polarity 2.7090
## TOL
## timedelta 0.5491
## n_tokens_title 0.8844
## n_tokens_content 0.3683
## n_non_stop_unique_tokens 0.4770
## num_hrefs 0.5433
## num_self_hrefs 0.8303
## num_imgs 0.8301
## num_videos 0.8930
## average_token_length 0.7060
## num_keywords 0.6070
## kw_min_min 0.3918
## kw_max_min 0.9171
## kw_min_max 0.7084
## kw_avg_max 0.2652
## kw_min_avg 0.6899
## kw_max_avg 0.7936
## self_reference_min_shares 0.7097
## self_reference_max_shares 0.6301
## is_weekend 0.9339
## LDA_00 0.8897
## global_subjectivity 0.6828
## global_rate_positive_words 0.6416
## global_rate_negative_words 0.7126
## avg_positive_polarity 0.3979
## min_positive_polarity 0.5584
## max_positive_polarity 0.3919
## min_negative_polarity 0.5175
## max_negative_polarity 0.8176
## title_subjectivity 0.3716
## title_sentiment_polarity 0.6781
## abs_title_subjectivity 0.5670
## abs_title_sentiment_polarity 0.3691
## Wi
## timedelta 115.1882
## n_tokens_title 18.3352
## n_tokens_content 240.5233
## n_non_stop_unique_tokens 153.7839
## num_hrefs 117.9216
## num_self_hrefs 28.6644
## num_imgs 28.7118
## num_videos 16.8008
## average_token_length 58.3945
## num_keywords 90.7980
## kw_min_min 217.6802
## kw_max_min 12.6843
## kw_min_max 57.7225
## kw_avg_max 388.5408
## kw_min_avg 63.0459
## kw_max_avg 36.4720
## self_reference_min_shares 57.3800
## self_reference_max_shares 82.3222
## is_weekend 9.9336
## LDA_00 17.3948
## global_subjectivity 65.1712
## global_rate_positive_words 78.3628
## global_rate_negative_words 56.5791
## avg_positive_polarity 212.2324
## min_positive_polarity 110.9400
## max_positive_polarity 217.6009
## min_negative_polarity 130.7636
## max_negative_polarity 31.2987
## title_subjectivity 237.1350
## title_sentiment_polarity 66.5745
## abs_title_subjectivity 107.1025
## abs_title_sentiment_polarity 239.6958
## Fi
## timedelta 119.0552
## n_tokens_title 18.9507
## n_tokens_content 248.5979
## n_non_stop_unique_tokens 158.9465
## num_hrefs 121.8803
## num_self_hrefs 29.6266
## num_imgs 29.6757
## num_videos 17.3649
## average_token_length 60.3548
## num_keywords 93.8462
## kw_min_min 224.9879
## kw_max_min 13.1101
## kw_min_max 59.6603
## kw_avg_max 401.5845
## kw_min_avg 65.1624
## kw_max_avg 37.6964
## self_reference_min_shares 59.3063
## self_reference_max_shares 85.0859
## is_weekend 10.2671
## LDA_00 17.9788
## global_subjectivity 67.3591
## global_rate_positive_words 80.9935
## global_rate_negative_words 58.4785
## avg_positive_polarity 219.3573
## min_positive_polarity 114.6643
## max_positive_polarity 224.9060
## min_negative_polarity 135.1535
## max_negative_polarity 32.3494
## title_subjectivity 245.0959
## title_sentiment_polarity 68.8095
## abs_title_subjectivity 110.6981
## abs_title_sentiment_polarity 247.7427
## Leamer
## timedelta 0.7410
## n_tokens_title 0.9404
## n_tokens_content 0.6069
## n_non_stop_unique_tokens 0.6907
## num_hrefs 0.7371
## num_self_hrefs 0.9112
## num_imgs 0.9111
## num_videos 0.9450
## average_token_length 0.8403
## num_keywords 0.7791
## kw_min_min 0.6260
## kw_max_min 0.9576
## kw_min_max 0.8417
## kw_avg_max 0.5150
## kw_min_avg 0.8306
## kw_max_avg 0.8909
## self_reference_min_shares 0.8424
## self_reference_max_shares 0.7938
## is_weekend 0.9664
## LDA_00 0.9432
## global_subjectivity 0.8263
## global_rate_positive_words 0.8010
## global_rate_negative_words 0.8441
## avg_positive_polarity 0.6308
## min_positive_polarity 0.7472
## max_positive_polarity 0.6260
## min_negative_polarity 0.7194
## max_negative_polarity 0.9042
## title_subjectivity 0.6096
## title_sentiment_polarity 0.8235
## abs_title_subjectivity 0.7530
## abs_title_sentiment_polarity 0.6076
## CVIF
## timedelta 2.2296
## n_tokens_title 1.3842
## n_tokens_content 3.3235
## n_non_stop_unique_tokens 2.5665
## num_hrefs 2.2534
## num_self_hrefs 1.4744
## num_imgs 1.4748
## num_videos 1.3708
## average_token_length 1.7339
## num_keywords 2.0167
## kw_min_min 3.1241
## kw_max_min 1.3349
## kw_min_max 1.7280
## kw_avg_max 4.6155
## kw_min_avg 1.7745
## kw_max_avg 1.5425
## self_reference_min_shares 1.7250
## self_reference_max_shares 1.9427
## is_weekend 1.3109
## LDA_00 1.3760
## global_subjectivity 1.7930
## global_rate_positive_words 1.9082
## global_rate_negative_words 1.7180
## avg_positive_polarity 3.0766
## min_positive_polarity 2.1925
## max_positive_polarity 3.1235
## min_negative_polarity 2.3655
## max_negative_polarity 1.4974
## title_subjectivity 3.2940
## title_sentiment_polarity 1.8053
## abs_title_subjectivity 2.1590
## abs_title_sentiment_polarity 3.3163
## Klein
## timedelta 1
## n_tokens_title 0
## n_tokens_content 1
## n_non_stop_unique_tokens 1
## num_hrefs 1
## num_self_hrefs 1
## num_imgs 1
## num_videos 0
## average_token_length 1
## num_keywords 1
## kw_min_min 1
## kw_max_min 0
## kw_min_max 1
## kw_avg_max 1
## kw_min_avg 1
## kw_max_avg 1
## self_reference_min_shares 1
## self_reference_max_shares 1
## is_weekend 0
## LDA_00 0
## global_subjectivity 1
## global_rate_positive_words 1
## global_rate_negative_words 1
## avg_positive_polarity 1
## min_positive_polarity 1
## max_positive_polarity 1
## min_negative_polarity 1
## max_negative_polarity 1
## title_subjectivity 1
## title_sentiment_polarity 1
## abs_title_subjectivity 1
## abs_title_sentiment_polarity 1
## IND1
## timedelta 0.0039
## n_tokens_title 0.0063
## n_tokens_content 0.0026
## n_non_stop_unique_tokens 0.0034
## num_hrefs 0.0039
## num_self_hrefs 0.0059
## num_imgs 0.0059
## num_videos 0.0064
## average_token_length 0.0050
## num_keywords 0.0043
## kw_min_min 0.0028
## kw_max_min 0.0065
## kw_min_max 0.0051
## kw_avg_max 0.0019
## kw_min_avg 0.0049
## kw_max_avg 0.0057
## self_reference_min_shares 0.0051
## self_reference_max_shares 0.0045
## is_weekend 0.0067
## LDA_00 0.0063
## global_subjectivity 0.0049
## global_rate_positive_words 0.0046
## global_rate_negative_words 0.0051
## avg_positive_polarity 0.0028
## min_positive_polarity 0.0040
## max_positive_polarity 0.0028
## min_negative_polarity 0.0037
## max_negative_polarity 0.0058
## title_subjectivity 0.0026
## title_sentiment_polarity 0.0048
## abs_title_subjectivity 0.0040
## abs_title_sentiment_polarity 0.0026
## IND2
## timedelta 1.2359
## n_tokens_title 0.3169
## n_tokens_content 1.7312
## n_non_stop_unique_tokens 1.4334
## num_hrefs 1.2518
## num_self_hrefs 0.4651
## num_imgs 0.4657
## num_videos 0.2932
## average_token_length 0.8056
## num_keywords 1.0770
## kw_min_min 1.6667
## kw_max_min 0.2273
## kw_min_max 0.7991
## kw_avg_max 2.0138
## kw_min_avg 0.8499
## kw_max_avg 0.5656
## self_reference_min_shares 0.7957
## self_reference_max_shares 1.0137
## is_weekend 0.1813
## LDA_00 0.3024
## global_subjectivity 0.8695
## global_rate_positive_words 0.9824
## global_rate_negative_words 0.7878
## avg_positive_polarity 1.6502
## min_positive_polarity 1.2104
## max_positive_polarity 1.6665
## min_negative_polarity 1.3223
## max_negative_polarity 0.5000
## title_subjectivity 1.7221
## title_sentiment_polarity 0.8822
## abs_title_subjectivity 1.1867
## abs_title_sentiment_polarity 1.7290
##
## 1 --> COLLINEARITY is detected by the test
## 0 --> COLLINEARITY is not detected by the test
##
## timedelta , n_tokens_title , num_self_hrefs , num_videos , self_reference_min_shares , global_rate_negative_words , avg_positive_polarity , min_positive_polarity , min_negative_polarity , max_negative_polarity , title_subjectivity , title_sentiment_polarity , abs_title_sentiment_polarity , coefficient(s) are non-significant may be due to multicollinearity
##
## R-square of y on all x: 0.142
##
## * use method argument to check which regressors may be the reason of collinearity
## ===================================
After removing 15 more variables for obvious multicolinearity via VIF (>5), we need to replot the correlation matrix, which shows a much lower clustering rate of high correlations.
Replot Correlation
#Remove the predictor
train_cor<-trimTrain2[1:31]
res <- cor(train_cor)
palette = colorRampPalette(c("green", "white", "red")) (20)
heatmap(x = res, col = palette, symm = TRUE, cexRow=0.5, cexCol = 0.5)
The new heatmap appears to have less prominent clustering values.
Final Model Fit Prediction
#trim the testing data
newTest1<-test[ -c(25:31) ]
toRemove<-c( "LDA_01", "LDA_02", "LDA_03", "LDA_04", "rate_positive_words", "self_reference_avg_sharess", "kw_avg_min", "n_unique_tokens", "rate_negative_words", "kw_avg_avg", "n_non_stop_words", "global_sentiment_polarity", "avg_negative_polarity", "kw_max_max")
trimTest4 <- newTest1[, ! names(newTest1) %in% toRemove, drop = F]
yhat_lm4<-predict(lm4,trimTest4)
RMSE_lm4<-sqrt(mean((trimTest4$shares - exp(yhat_lm4))^2))
Open Parallel Processing
library(parallel)
library(doParallel)
cores<-detectCores()
cl <- makeCluster(cores-1)
registerDoParallel(cl)
Backward Regression Selection
Transform the response with log, then fit a linear regression model with the variables after backward selection.
#backward selection after log transformation
library(leaps)
backward<- regsubsets(log(shares)~., trimTrain1, nvmax = 31, method = "backward")
backward_summary<-summary(backward)
#backward_summary[["which"]][size, ]
par(mfrow=c(1,3))
plot(backward_summary$cp, xlab = "Size", ylab = "backward Cp", type = "l")
plot(backward_summary$bic, xlab = "Size", ylab = "backward bic", type = "l")
plot(backward_summary$adjr2, xlab = "Size", ylab = "backward adjR2", type = "l")
coef(backward, which.min(backward_summary$cp))
## (Intercept)
## 6.026741e+00
## n_tokens_content
## 1.819146e-04
## n_non_stop_unique_tokens
## 5.199117e-01
## num_hrefs
## 7.145266e-03
## num_imgs
## 9.952843e-03
## average_token_length
## -1.295631e-01
## num_keywords
## 3.588396e-02
## kw_min_min
## 1.522989e-03
## kw_max_min
## 7.164718e-05
## kw_avg_min
## -3.395589e-04
## kw_min_max
## -3.277207e-07
## kw_max_max
## 1.679088e-07
## kw_max_avg
## -4.061436e-05
## kw_avg_avg
## 3.065877e-04
## self_reference_min_shares
## -2.513487e-06
## self_reference_max_shares
## -1.902204e-06
## self_reference_avg_sharess
## 5.896310e-06
## is_weekend
## 3.015607e-01
## LDA_00
## 2.665259e-01
## global_subjectivity
## 4.772389e-01
## global_rate_negative_words
## 7.373213e+00
## rate_negative_words
## -5.300122e-01
## min_positive_polarity
## -3.568706e-01
## max_positive_polarity
## -1.915775e-01
## avg_negative_polarity
## -3.675670e-01
## max_negative_polarity
## 5.050231e-01
## title_subjectivity
## 9.705537e-02
## title_sentiment_polarity
## 1.217799e-01
## abs_title_subjectivity
## 3.173377e-01
coef(backward, which.max(backward_summary$adjr2))
## (Intercept)
## 5.909880e+00
## n_tokens_content
## 1.693521e-04
## n_non_stop_words
## 3.658614e-01
## n_non_stop_unique_tokens
## 4.196801e-01
## num_hrefs
## 7.254519e-03
## num_imgs
## 9.549880e-03
## average_token_length
## -1.636281e-01
## num_keywords
## 3.611458e-02
## kw_min_min
## 1.530708e-03
## kw_max_min
## 7.297875e-05
## kw_avg_min
## -3.459285e-04
## kw_min_max
## -3.176385e-07
## kw_max_max
## 1.701103e-07
## kw_max_avg
## -4.064527e-05
## kw_avg_avg
## 3.065108e-04
## self_reference_min_shares
## -2.487701e-06
## self_reference_max_shares
## -1.909126e-06
## self_reference_avg_sharess
## 5.893345e-06
## is_weekend
## 3.038499e-01
## LDA_00
## 2.627707e-01
## global_subjectivity
## 3.545519e-01
## global_sentiment_polarity
## 3.373240e-01
## global_rate_negative_words
## 7.178969e+00
## rate_negative_words
## -4.251939e-01
## min_positive_polarity
## -4.047131e-01
## max_positive_polarity
## -2.418988e-01
## avg_negative_polarity
## -4.437618e-01
## max_negative_polarity
## 5.471188e-01
## title_subjectivity
## 1.018941e-01
## title_sentiment_polarity
## 1.126524e-01
## abs_title_subjectivity
## 3.195560e-01
#get best subset of the specified size with min cp.
sub <- backward_summary$which[which.min(backward_summary$cp), ]
# Create test model matrix, predcition, test error
test_model <- model.matrix(log(shares)~ ., data = lmNewTest3)
model <- test_model[, sub]
yhat_back<-model %*% coef(backward, which.min(backward_summary$cp))
RMSE_back<-sqrt(mean((test$shares - exp(yhat_back))^2))
Random Forests
As previously mentioned in the regression trees section, the random forest builds an entire forest of these trees, and merges them together to get a more accurate and stable predictions than one off trees. It is usually trained using the bagging method. Unlike regression trees, which are prone to overfitting, only a random subset of the features is taken into consideration by the algorithm for splitting a node (used CV to find the perfect amount of variables to use). This builds in additional error and makes a more robust prediction.
The manual dimensional reduction was necessary to have the processing speeds to handle the random forests model.
library(randomForest)
#single bagged model
tree.train<-randomForest(shares~., data=trimTrain1, mtry=32, importance=TRUE)
tree.train
##
## Call:
## randomForest(formula = shares ~ ., data = trimTrain1, mtry = 32, importance = TRUE)
## Type of random forest: regression
## Number of trees: 500
## No. of variables tried at each split: 32
##
## Mean of squared residuals: 225836201
## % Var explained: -7.8
#single bagged regression tree error prediction
tree.test<-lmNewTest3["shares"]
yhat.bag<-predict(tree.train, newdata=lmNewTest3)
yhat.bag<-as.data.frame(yhat.bag)
yhat_bag<-mean((yhat.bag$yhat.bag-tree.test$shares)^2)
RMSE_bag<-sqrt(yhat_bag)
#run parallel processing to determine the best mtry value
control <- trainControl(method="repeatedcv", number=15, repeats=3, search="random")
mtry <- sqrt(ncol(trimTrain1))
rf_random <- train(shares~., data=trimTrain1, method="rf", tuneLength=15, trControl=control)
print(rf_random)
## Random Forest
##
## 4380 samples
## 41 predictor
##
## No pre-processing
## Resampling: Cross-Validated (15 fold, repeated 3 times)
## Summary of sample sizes: 4087, 4089, 4089, 4087, 4088, 4089, ...
## Resampling results across tuning parameters:
##
## mtry RMSE Rsquared MAE
## 6 11064.20 0.03506399 2856.553
## 8 11149.86 0.03278844 2874.201
## 10 11336.61 0.03119916 2910.572
## 14 11494.60 0.02843014 2948.545
## 17 11656.99 0.02554926 2969.380
## 18 11687.01 0.02619229 2975.067
## 19 11654.92 0.02618212 2971.074
## 20 11809.23 0.02424829 2994.641
## 27 12065.56 0.02198172 3037.255
## 30 12097.93 0.02159392 3035.926
## 31 12186.67 0.02046357 3051.066
## 35 12277.83 0.02117312 3056.618
## 39 12504.33 0.02050646 3083.314
## 41 12419.78 0.02062526 3086.602
##
## RMSE was used to select the optimal model
## using the smallest value.
## The final value used for the model was mtry = 6.
plot(rf_random)
mtry<-which.min(rf_random$results$RMSE)
#USe a model to determine the best number of trees
control <- trainControl(method="repeatedcv", number=5, repeats=3, search="grid")
tunegrid <- expand.grid(.mtry=mtry)
modellist <- list()
for (ntree in c(500, 1000, 1500, 2000)) {
fit <- train(shares~., data=trimTrain1, method="rf", tuneGrid=tunegrid, trControl=control, ntree=ntree)
key <- toString(ntree)
modellist[[key]] <- fit
}
results <- resamples(modellist)
summary(results)
##
## Call:
## summary.resamples(object = results)
##
## Models: 500, 1000, 1500, 2000
## Number of resamples: 15
##
## MAE
## Min. 1st Qu. Median Mean
## 500 2279.469 2437.125 2623.993 2669.576
## 1000 2160.764 2487.919 2566.709 2648.974
## 1500 2166.048 2435.301 2679.688 2650.837
## 2000 2073.480 2269.924 2462.833 2652.750
## 3rd Qu. Max. NA's
## 500 2807.488 3474.814 0
## 1000 2821.177 3448.537 0
## 1500 2767.883 3238.394 0
## 2000 2927.455 4092.169 0
##
## RMSE
## Min. 1st Qu. Median Mean
## 500 4979.982 6417.385 11582.589 12673.30
## 1000 4448.666 6308.064 11429.829 12408.53
## 1500 4721.711 7035.141 11937.270 12618.13
## 2000 4296.065 5033.412 7198.068 11734.82
## 3rd Qu. Max. NA's
## 500 14065.30 26461.74 0
## 1000 15464.89 27600.19 0
## 1500 12622.53 26038.11 0
## 2000 14992.14 30098.36 0
##
## Rsquared
## Min. 1st Qu. Median
## 500 0.007362031 0.011030561 0.01413348
## 1000 0.006240405 0.013242814 0.01905264
## 1500 0.006128803 0.009252216 0.01442754
## 2000 0.003513309 0.014457394 0.02573561
## Mean 3rd Qu. Max. NA's
## 500 0.02308878 0.02442855 0.09893498 0
## 1000 0.02642723 0.03961135 0.06218658 0
## 1500 0.02685317 0.02582982 0.14669403 0
## 2000 0.03573336 0.05556318 0.10011027 0
#Apply best fit parameters to model.
#random forests model
tree.trainRF<-randomForest(shares~., data=trimTrain1, mtry=mtry, importance=TRUE)
tree.trainRF
##
## Call:
## randomForest(formula = shares ~ ., data = trimTrain1, mtry = mtry, importance = TRUE)
## Type of random forest: regression
## Number of trees: 500
## No. of variables tried at each split: 1
##
## Mean of squared residuals: 208082709
## % Var explained: 0.67
#random forest error prediction
tree.trainRF<-randomForest(shares~., data=trimTrain1, ntree=500, mtry=2, importance=TRUE)
tree.trainRF
##
## Call:
## randomForest(formula = shares ~ ., data = trimTrain1, ntree = 500, mtry = 2, importance = TRUE)
## Type of random forest: regression
## Number of trees: 500
## No. of variables tried at each split: 2
##
## Mean of squared residuals: 208432947
## % Var explained: 0.5
plot(tree.trainRF)
#Calculate Prediction
yhat.rf<-predict(tree.trainRF, newdata = lmNewTest3)
yhat.rf<-as.data.frame(yhat.rf)
yhat_rf<-mean((yhat.rf$yhat.rf-tree.test$shares)^2)
RMSE_rfTrimmed<-sqrt(yhat_rf)
varImpPlot(tree.trainRF)
Boosted Tree
Boosting is a general approach that can be applied to many statistical learning methods for regression or classification. The trees in boosting are grown sequentially : each tree is grown using information from previously grown trees. Boosting does not involve bootstrap sampling; instead each tree is fit on a modified version of the original data set.
Procedure (for regression trees):
1.Initialize predictions as 0,
2.Find the residuals (observed-predicted), call the set of them
3.Fit a tree with splits (d+1 terminal nodes) treating the residuals as the response (which they are for the first fit)
4.Update predictions
5.Update residuals for new predictions and repeat B times
Tune parameters must be chosen shrinkage, B and d in the boosting tree model.
cvcontrol <- trainControl(method="repeatedcv", number = 10,
allowParallel=TRUE)
grid <- expand.grid(n.trees = c(1000,1500),
interaction.depth=c(1:3),
shrinkage=c(0.01,0.05,0.1),
n.minobsinnode=c(20))
capture<-capture.output(train.gbm <- train(log(shares) ~ .,
data=train,
method="gbm",
trControl=cvcontrol,
tuneGrid = grid))
train.gbm
## Stochastic Gradient Boosting
##
## 4380 samples
## 53 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 1 times)
## Summary of sample sizes: 3941, 3942, 3942, 3943, 3942, 3941, ...
## Resampling results across tuning parameters:
##
## shrinkage interaction.depth n.trees
## 0.01 1 1000
## 0.01 1 1500
## 0.01 2 1000
## 0.01 2 1500
## 0.01 3 1000
## 0.01 3 1500
## 0.05 1 1000
## 0.05 1 1500
## 0.05 2 1000
## 0.05 2 1500
## 0.05 3 1000
## 0.05 3 1500
## 0.10 1 1000
## 0.10 1 1500
## 0.10 2 1000
## 0.10 2 1500
## 0.10 3 1000
## 0.10 3 1500
## RMSE Rsquared MAE
## 0.7681557 0.1732328 0.5523774
## 0.7660428 0.1772920 0.5498350
## 0.7634276 0.1827888 0.5464896
## 0.7624344 0.1850689 0.5456519
## 0.7612713 0.1875911 0.5441152
## 0.7610773 0.1880597 0.5433628
## 0.7645608 0.1813511 0.5483374
## 0.7651187 0.1812789 0.5489533
## 0.7668069 0.1796954 0.5489326
## 0.7719152 0.1729540 0.5536085
## 0.7686746 0.1783743 0.5504686
## 0.7743425 0.1725768 0.5554977
## 0.7676056 0.1780561 0.5527836
## 0.7733872 0.1695549 0.5570542
## 0.7835695 0.1574489 0.5606110
## 0.7901480 0.1525438 0.5668374
## 0.7902980 0.1532283 0.5662682
## 0.8004034 0.1448349 0.5743237
##
## Tuning parameter 'n.minobsinnode' was
## held constant at a value of 20
## RMSE was used to select the optimal model
## using the smallest value.
## The final values used for the model
## were n.trees = 1500, interaction.depth =
## 3, shrinkage = 0.01 and n.minobsinnode = 20.
boostPred <- predict(train.gbm, newdata = test)
RMSE_boost <- sqrt(mean((test$shares - exp(boostPred))^2))
stopCluster(cl)
Comparison
Generally, the model with the lowest RMSE is the best on comparison.
comparison<-data.frame(RMSE_lm, RMSE_lm2, RMSE_lm3, RMSE_lm4, RMSE_back, RMSE_bag, RMSE_rfTrimmed, RMSE_boost, RMSE_regTree)
comparison
## RMSE_lm RMSE_lm2 RMSE_lm3 RMSE_lm4 RMSE_back
## 1 94872.86 97810.15 93811.9 192485.1 70876.98
## RMSE_bag RMSE_rfTrimmed RMSE_boost
## 1 17372.6 16091.67 16231.99
## RMSE_regTree
## 1 18192.27
which.min(comparison)
## RMSE_rfTrimmed
## 7
The overall prediction error rate for this data set is very high. This is likely due to the high values of outlier articles with freakishly high shares, that are timely AND viral. These values were NOT removed from analysis, as these are the share metrics that a company would likely want to evaluate for emulation.